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Executive Summary / Abstract:   
 

 
This annual report summarizes the work done in Work Package 10 ‘Machine 
Learning Solutions for Data Analysis and Exploitation in Planetary Sciences’ during 
the second year of Europlanet 2024 Research Infrastructure.  The main aims of the 
work package are to foster wider use of machine learning technologies in data driven 
space research and to provide open-source machine learning code developed for 
specific science cases. Work package 10 is organized around six tasks that target 
management and coordination of the activities, the development of machine 
learning based data analysis code and the dissemination of the tools as well as 
integration of the results into VESPA, GMAP and SPIDER where appropriate. Despite 
delays in the development work due to the ongoing Covid-19 pandemic, work on all 
of the six tasks has been progressing. Developments on three science cases are 
considered to be finished and work on four other science cases is progressing. We 
conducted two workshops at the EPSC 2021 conference, introducing two of our 
machine learning pipelines. We put up first tutorials on our Machine Learning Portal 
as well as on our public GitHub repositories. ML organized machine learning sessions 
at EGU21 and EPSC2021, and had presentations at many conferences (LPSC2021, 
EGU21, EPSC2021, ESWW 2021, AGU Fall Meeting 2021). We started collaborations 
with national (FWF project at IWF) as well as international (EU Horizon 2020 
EXPLORE project) research projects, and started a series of fireballs workshops 
together with NA2. An EPN-TAP server was set up at the IWF, on which we started to 
integrate first data sets of our science cases into VESPA. Furthermore, first steps 
were undertaken to include our pipelines in SPIDER. 
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1 Explanation of WP10 Work & Overview of Progress 

a. Objectives and Description of Work 

The objectives and description of work for Work Package (WP) 10 ‘JRA4 ML - 
Machine Learning Solutions for Data Analysis and Exploitation in Planetary Sciences’ 
are as follows, quoted from the proposal: 
 

JRA4 will develop Machine Learning (ML) powered data analysis and 
exploitation tools optimised for planetary science and integrate expert 
knowledge on ML into the planetary community. All tools will also be linked 
via the VA services of VESPA, GMAP and SPIDER (where appropriate). 

 
The main objectives are: 

 to develop ML tools, designed for and tested on planetary 
science cases submitted by the community, and to provide 
sustainable, open access to the resulting products, together 
with support documentation 

 to foster wider use of ML technologies in data driven space 
research, demonstrate ML capabilities and generate a wider 
discussion on further possible applications of ML 

 to identify scientific and commercial applications for the ML 
tools developed through the JRA tasks 

 
Description of work 
This JRA will be led by IWF-OEAW, co-led by KNOW, and organised 
around 6 tasks. It will develop ML powered data analysis and 
exploitation tools that target a set of representative scientific cases 
selected from about a dozen proposals for specific applications of ML 
in planetary science submitted by the scientific user community in the 
course of proposal preparation. Software developed in the course of 
the JRA will be open source (Apache License 2.0), thoroughly 
documented and available via a git service, so that all results can be 
used freely, and further developed and extended by the community. 

 

Work Package Beneficiaries 

Apart from the WP lead, IWF-OEAW, there are eight beneficiaries contributing to our 
WP. Table 1 lists the acronyms of the WP beneficiaries as used in the Europlanet 
2024 Research Infrastructure (EPN2024-RI) proposal and their corresponding 
institutions. 
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Science Cases 

The science cases proposed by the planetary science community in the course of 
proposal preparation are listed in Table 2. The proposal by GMAP covers different 
cases dealing with the detection and classification of various planetary surface 
features, as for example mounds and pits. 
 

Table 2: list of science cases 

Proposer Science Case 

IAP-CAS 

Detection of plasma boundary crossings at planetary magnetospheres and 
solar wind 

Classification of plasma wave emissions in electromagnetic spectra  

INAF 
Mineral identification via reflectance spectra [possible applications foreseen 
in GMAP] 

DLR 
Classification of surface composition on the surface of Mercury  
[resulting data products can be used for GMAP] 

AOP Abundance of asteroids in Earth-like orbits from STEREO images 

GMAP Automatic recognition and analysis of planetary surface features 

IWF-OEAW Detection and classification of CMEs and CIRs in in-situ solar wind data 

LMSU 
Search for magnetopause/shockwave crossings on Mercury based on 
MESSENGER data 

 

Deliverables and Milestones 

There are nine deliverables and three milestones for our WP, listed in Table 3. All 

milestones and deliverables were met in due time.  
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Table 3: List of deliverables (D) and milestones (MS) 

Abbreviations Description 
Month 
due 

Finished 

D10.1 Annual Report 1 M12 ✔︎ 

D10.2 Annual Report 2 M24  

D10.3 
Tutorial on Machine Learning and Basic How 
Tos (initial release) 

M31  

D10.4 
Demonstrator and Documentation of Data-
Processing Techniques 

M42  

D10.5 
Demonstrator and Documentation of Time-
based Signal Analysis and Automatic 
Classification Tool 

M42  

D10.6 
Demonstrator and Documentation of 
General Classification Toolset 

M42  

D10.7 Annual Report 3 M36  

D10.8 
Tutorial on Machine Learning and Basic How 
Tos (final release) 

M42  

D10.9 Annual Report 4 M48  

MS11 Requirements for ML tools documented M4 ✔︎ 

MS51 ML Demonstrators implemented and tested M30  

MS86 
ML Demonstrators fully validated and 
integrated 

M42  

 

      

b. Explanation of the work carried in WP 

 

Task 1 - Management and Coordination  

 

This task oversees the management of the ML JRA4, coordinates the activities within 
the WP and with the other WPs and reports to the PMC. 
We updated our science cases roadmap (see Figure 1) from last year to account for 
some delays due to the Covid-19 pandemic and science case specific problems, e.g., 
bad quality of data, trying out different approaches, etc.  
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Task 2 - Requirements for Machine Learning, Tool Validation and Communication 

 
Infrastructure 
The three platforms set up during the first year of the WP, namely the (private) 
GitLab group, the GitHub organization and the ML Portal, were further maintained. 
There is now more information about our activity on the ML Portal, e.g., more 
information about the science cases, presentations, news regarding ML conferences 
and sessions and tutorials. 
 
Presentations and Workshops 
A presentation introducing the ML WP and its activities was given at the Open 
Planetary Lunch in June 2021 as well as at the AGU21. 
Fireball-tracking networks around the world are assisting in the recovery of 
fragments of fresh meteorites and understanding where in the solar system they 
originated. In collaboration with NA2, the ML WP organised a workshop on 11-12 
June 2021 to bring together observers from different fireball networks, along with 
ML experts, to discuss how ML can support the fireballs community and to advise on 
handling the data collected. This workshop was the first in a series of four - the next 
will take place (again virtually) on 4-5 February 2022. 
Two ML pipelines have been presented in two workshops during EPSC2021 - the 
pipeline for the IWF ICME science case as well as the one for the LMSU boundaries 
science case. Both pipelines are available on GitHub.  
 

Presentations with results of the science cases are mentioned in the section about 
the individual science cases. 
 
Collaborations 
We started a collaboration with two research projects at the IWF. Out of one of 
these collaborations a publication about the prediction of the magnetic field Bz 
component of ICMEs arose:  
Reiss, M., et al., (2021), Machine Learning for Predicting the Bz Magnetic Field 
Component From Upstream in Situ Observations of Solar Coronal Mass Ejections, 
https://doi.org/10.1029/2021SW002859. 
 

https://github.com/epn-ml
https://ml-portal.oeaw.ac.at/
https://doi.org/10.1029/2021SW002859
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Further, we started a collaboration with the EU Horizon 2020 project EXPLORE. On 
the one hand, ML supports their Lunar Data Challenge. On the other hand, we are 
investigating the possibility to integrate our ML pipelines into the EXPLORE platform 
(see description of Task 6). 
 

Task 3 - Data Pre-Processing, ETL and Feature Engineering 

 
The aspects of data pre-processing and feature engineering are covered in the 
descriptions of the work for the individual science cases. Most science cases thereby 
utilize standard pre-processing methods or work on the raw data through end-to-
end learning. However, we also explore new routes to automate pre-processing. For 
example, the GMAP Mounds science case utilizes data augmentation in the form of 
generative adversarial networks to overcome data sparsity. Details on the pre-
processing conducted can be found below. 
 

 

Task 4 - Time-based Signal Analysis and Automatic Classification 

 
IWF ICME Science Case 
Interplanetary coronal mass ejections (ICMEs) are one of the main drivers for space 
weather disturbances. In the past, different machine learning approaches have been 
used to automatically detect events in existing time series resulting from solar wind 
in situ data. However, classification, early detection and ultimately forecasting still 
remain challenging when faced with the large amount of data from different 
instruments. While CNNs are often used to discover objects or patterns in images or 
data series, there are two main problems when facing our specific task: high 
duration variability and a rather ambiguous definition of start and end time. 
 
After the reimplementation of a model proposed by Nguyen et al. (2019) in year 1 of 
this WP, the model was tested on STEREO-A and STEREO-B data as well as on WIND 
data. All three contain less variables than the original data set used by Nguyen et al. 
At a similar recall as for the original set, the precision for all three datasets was only 
around 30% and the accuracy in delivering start and end times was limited. 
 
The next step was to align all three data sets in order to process more training data 
for a combined model. It was tested on held out datasets for WIND, STEREO-A and 
STEREO-B. Surprisingly, this did not sufficiently improve performance and lead us to 
explore other approaches. 
 
Starting from the reimplementation a post processing step based on YOLO v5 
(ultralytics) was investigated, in order to improve performance. Even though first 
results seemed promising, the idea was later discarded due to unsatisfactory results 
and the laborious pipeline. Since the ultimate goal is an explicit and widely applicable 
pipeline, it was decided to abandon the general approach of using multiple basic 
neural networks and the similarity measure used by Nguyen et al. (2019) completely 
and compose it as a segmentation problem instead. 
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We proposed a pipeline using a UNet (Ronneberger et al., 2015) including residual 
blocks, squeeze and excitation blocks, Atrous Spatial Pyramidal Pooling (ASPP) and 
attention blocks, similar to the ResUNet++ (Jha et al., 2019), for the automatic 
detection of ICMEs. Comparing it to last year's results, we find that our model 
outperforms the baseline regarding GPU usage, training time and robustness to 
missing features, thus making it more usable for other data sets, as well as the three 
aligned data sets. The confusion matrix is shown in Figure 2. 

 
The relatively fast training allows straightforward tuning of hyperparameters. Our 
proposed pipeline can be used for any time series segmentation problem. The 
straightforward implementation allows a simple extension to a multiclass 
classification problem and paves the way to include corotating interaction regions 
into the range of detectable phenomena within our pipeline. Furthermore, we hope 
to apply our model to similar problems in the future. 
 
Results of this science case were presented at the EGU21, at EPSC2021, at ESWW 
2021, and at AGU21 (see presentations on the ML Portal and on GitHub). A further 
presentation was given in May 2021 at an international working group called ‘CMEs, 
CIRs, HCS and large-scale structure’ (led by, among others, Christian Möstl and Silvia 
Perri). This ML pipeline was presented in a workshop at EPSC2021 and is, together 
with a tutorial, available on our GitHub repository. A publication will be submitted 
soon.  
 

References: 

https://ml-portal.oeaw.ac.at/doku.php?id=conference_presentations
https://github.com/epn-ml
https://github.com/epn-ml
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Nguyen, G., et al. (2019), Automatic Detection of Interplanetary Coronal Mass 
Ejections from In Situ Data: A Deep Learning Approach, Astrophys. J. 874, 145, 
doi:10.3847/1538-4357/ab0d24 
Jha, D., et al. (2019), Resunet++: An advanced architecture for medical image 
segmentation, arXiv e-prints, arXiv:1911.07067 
 
LMSU Boundaries Science Case 
The goal of this case is to improve our understanding of Mercury's magnetosphere 
and its dynamics. We utilise the data recorded by the MESSENGER (MErcury Surface, 
Space ENvironment, GEochemistry, and Ranging) spacecraft, which collected vast 
amounts of heterogeneous data during its approximately 4000 orbit voyage, most 
interestingly the magnetic field data from the magnetometer. A typical orbit 
involved passing from the interplanetary magnetic field through the bow shock, the 
magnetosheath, the magnetopause, the magnetosphere of Mercury, and thereupon 
the same sequence in reverse. Since a mercurial year is about 88 Earth days, several 
years' worth of magnetometer data was recorded. This is nice because several 
variations in environmental configurations are recorded, which is useful to build 
automatic models for event recognition. The resulting data set of crossing times and 
positions is to be used in conjunction with the paraboloid magnetosphere model to 
compute the magnetic field lines in the magnetosphere; these can subsequently be 
used to perform modelling of trajectories of particles sputtered from the surface of 
the planet by space radiation. 
 

Based on data from the mission, several global models of the magnetosphere were 
proposed (e.g., Winslow et al., 2013; Philpott et al., 2020). However, they could only 
describe an average shape of the bow shock and magnetopause crossings and can be 
prone to missing the statistical nuances in the data.  Given large data, neural 
networks can be expected to approximate complex functions, which often surpass 
deterministic and rule-based methods, in a variety of time series tasks like 
classification (Fawaz et al., 2019), time series forecasting (Lim and Bohren, 2021), 
and rare time series event detection (Nguyen et al., 2018). We leverage these to 
develop a predictor that can be used in real-time during orbit to predict magnetic 
region for each step in a short window of observation. Figure 3 illustrates the 
different crossing labels for an exemplary orbit.  
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The use of statistical neural networks allows us to explore another aspect: with the 
help of active learning, it is possible to add samples to the training process 
incrementally. With this, we can examine how the model scales its predictive 
capacity with increasing data, and thus study how the variations such as changing 
solar wind and environmental conditions affects the manifestation of boundary 
signatures. To begin with, different orbits can be expected to have some element of 
similarity in the magnetic field structure, yet would have large variations in the same 
segments at different conditions. It is also interesting to study what the minimum 
amount is for the data needed to be able to generalise these phenomena for future 
missions such as BepiColombo. 
 
The dataset was manually labelled with the boundary crossings. To identify bow 
shocks, we first subtracted planetary dipole magnetic field components from the 
magnetometer measurements, computed the magnitude of the remainder 
attributed to external sources, applied the Savitzky-Golay filter to smooth the time 
profile of the remainder and computed its second derivative. The first and the last 
second derivative spikes as determined by z-score are assumed to be the enter and 
exit bow shock crossings respectively. Magnetopause boundaries were eyeballed 
using the cartesian components of the magnetic fields in the Mercury Solar Orbital 
coordinate system. During magnetopause crossings at least one of the components 
in the magnetogram experiences a sharp growth; the exact component depends on 
the spacecraft position. The beginning and ending points of this growth region are 
assumed to determine the magnetopause crossing edges. To supplement these, we 
also used the boundaries marked by Philpott et al. (2020) for a few orbits. 
 
The distribution of the different magnetic regions, after annotation, is reported in 
Table 4. The boundaries of critical interest - bow shock and magnetopause - are 
minorities with only 3.7 and 2.3 % representation. The table highlights the data 
imbalance issue that requires investigating special techniques to ensure the 
predictor does not bias towards the overrepresented classes. 
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As a first step in pre-processing, feature selection was performed to assess the 
contribution of available features in the estimation of the output. Based on statistical 
correlations, the magnetic flux features (BX_MSO, BY_MSO, BZ_MSO), spacecraft 
position coordinates (X_MSO, Y_MSO, Z_MSO) and planetary velocity components 
(VX, VY, VZ) were found to be most informative. In addition, three meta features 
namely EXTREMA, COSALPHA and RHO_DIPOLE were selected.  
 
In the feature preparation stage, a sliding window of variable sizes (3 seconds to 3 
minutes) with a hop size of 1 second was computed on the time series signal to 
obtain feature vectors. Finally, the features were normalised to have mean of 0 and 
a standard deviation of 1. No other pre-processing or engineering was applied in 
order to allow the deep learning model to engineer features implicitly. 
 
The windowed features are fed first into a block of 3 Convolutional layers with 1D 
filters, each followed by Batch Normalisation and ReLu activations. The activations 
obtained at the end of the CNN block are then passed to the Recurrent block with 
two layers of LSTMs. The final activations are then passed to a fully connected layer 
with softmax activations. The objective function used for training is Categorial cross 
entropy, with Adam optimizer.  
 
The sample results in Figures 4 and 5 are from a model trained with two Mercury 
years of data, which is about 300 orbits.  
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The window size used in these experiments is 30 seconds. Overall, the predictor 
achieves a macro F1 score of about 80% on the bow shock and the magnetopause 
crossings on a randomly sampled test of 300 orbits. None of the orbits overlap in the 
train and test sets. 
 
The results from the active learning experiment are still not complete. We are 
currently in the process of documenting them and we will put them forth in a 
publication soon. 
 
Results of this science case were presented at the EGU21 as well as at EPSC2021 (see 
presentations on the ML Portal and on GitHub). This ML pipeline was presented in a 
workshop at the EPSC2021 and is available on our GitHub repository. A publication 
will be submitted soon. 
 

References: 
Philpott, L.C., et al. (2020), The Shape of Mercury’s Magnetopause: The Picture From 
MESSENGER Magnetometer Observations and Future Prospects for BepiColombo, J. 
Geophys. Res. (Space Physics) 125, doi: 10.1029/2019JA027544 

Winslow, R. M., et al. (2013), Mercurys magnetopause and bow shock from 
MESSENGER Magnetometer observations, J. Geophys. Res. (Space Physics) 118, 
10.1002/jgra.50237 

Fawaz, H.I., et al. (2019), Deep learning for time series classification: a review, Data 
Mining and Knowledge Discovery 33, doi: 10.1007/s10618-019-00619-1 

 Lim, B., and Zohren, S. (2021), Time-series forecasting with deep learn- ing: a survey, 
Philosophical Transactions of the Royal Society A: Mathematical, Physical and 
Engineering Sciences 379, doi: 10.1098/rsta.2020.0209 

Nguyen, V., et al. (2018), Applications of Anomaly Detection Using Deep Learning on 
Time Series Data. In: 2018 IEEE 16th Intl Conf on Dependable, Autonomic and Secure 
Computing, 16th Intl Conf on Pervasive Intelligence and Computing, 4th Intl Conf on 
Big Data Intelligence and Computing and Cyber Science and Technology 
Congress(DASC/PiCom/DataCom/CyberSciTech), 
doi:10.1109/DASC/PiCom/DataCom/CyberSciTec.2018.00078.  
 
IAP Boundaries Science Case 

https://ml-portal.oeaw.ac.at/doku.php?id=conference_presentations
https://github.com/epn-ml
https://github.com/epn-ml
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Planetary magnetospheres create multiple sharp boundaries such as the bow shock, 
where the solar wind plasma is decelerated and compressed, or the magnetopause, 
a transition between solar wind field and planetary field. The boundaries are 
identified by a discontinuity in magnetic field, plasma density, and in the spectrum of 
high-frequency waves. These measurements are available on many planetary 
missions, such as Cluster or THEMIS (Figure 6). Due to the high amount of available 
data, a deep learning approach was found to be well suited to automatically identify 
the said boundaries. In 2021, we have compiled a large dataset of data collected by 
several instruments on the ESA Cluster satellites of more than 2000 bow shock 
crossings encountered between 2001 and 2014 (the crossings were identified 
visually by humans to prepare this training dataset). The data has been pre-
processed and the process of model development has been started. The code to 
process the original spacecraft data is available on GitHub.  
 

 
 
This science case was presented at the EPSC2021 and the AGU21 (see presentations 
on the ML Portal). 
 

Task 5 - Images and Other (General) Classification Tools 

 
 

https://ml-portal.oeaw.ac.at/doku.php?id=conference_presentations
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GMAP Mounds Science Case 
The GMAP Mounds identification science case aims to develop a generalised 
machine learning pipeline for the localisation and characterisation of specific 
geomorphological features (mounds) that are present on the surface of Mars. 
Mounds are positive relief features that can be ascribed to a variety of phenomena 
(e.g., De Toffoli et al., 2019). They can be related to monogenic edifices due to spring 
or mud volcanism, rootless cones on top of lava flows, pingos and so on. The focus of 
the investigation is related to the sedimentary/spring case of mud extrusion or 
sulphate oversaturated fluids. These objects are usually widespread regionally 
and/or contained in large complex craters (i.e., tens of km in diameter) often in 
populations of several hundred/thousands. Previously, automatic detections were 
performed in some of these cases (Pozzobon et al., 2019) using topographic data in 
limited areas (i.e., Digital Terrain Models (DTMs) as rasters whose cells represent 
height values) in order to discriminate these objects in terms of pre-trained 
morphometric parameters and map them. Due to the scarcity of high-resolution 
DTMs and poor area coverage, the ML WP challenge is to reach the ability to detect 
such mound features by using simple grayscale panchromatic images at mid-high 
resolution with no need of topographic information. 
 
The training set consists of two DTMs, one used for training and the other for 
testing. In the first step, the training DTM is tiled into several smaller fixed sized 
images. The label masks are created based on the available ground-truth shape files. 
The images are then scaled to be in range [-1,1]. The training set is then split further 
into train and validation sets with an 80/20 ratio. The train set is augmented in the 
next step with image manipulations such as flipping, rotation, rescaling and so on to 
create a large training set for the segmentation task. 
 
For the initial image segmentation task, a standard UNet (Ronneberger et al., 2015) 
is trained using the training set. A mean IoU (Intersection over Union) of about 60 % 
on the validation set is obtained.  This result is consistent with another GAN based 
model, indicating a saturation in information present in the training set.  
 
Due to the limited number of samples to train from, we learn a Generative model 
(Goodfellow et al., 2020) to approximate the true distribution of the landforms. We 
generate an augmented set using this approach and train the image segmentation 
again, observing an improvement of about 10% in the IoU. This is an interesting 
result, as it indicates that the model can be used to simulate the mound terrains. The 
approximated distribution space should be then factorisable into a set of 
independent mechanisms, which could control factors of variation.  
 
A simulator of such likes can be used for controlled generation. Another advantage 
of latent space learning is that it can offer benefits in downstream tasks, which is an 
added advantage for storage and efficient searching. We have developed this 
simulator and we plan to disseminate the method as a publication in the coming 
months. 
 
Results of this science case were presented at the EGU21 (see presentations on the 
ML Portal). The ML pipeline is available on our GitHub repository. 

https://ml-portal.oeaw.ac.at/doku.php?id=conference_presentations
https://github.com/epn-ml
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GMAP Pits Science Case 
To improve the results obtained by the first tool for automated mapping of pits 
(DeepLandforms-YOLOv5, https://github.com/epn-ml/DeepLandforms-YOLOv5), a 
change of architecture was necessary. The results obtained by that tool, despite 
their high quality, need further processing since they are not immediately usable for 
proper mapping as they are composed only by a pair of coordinates that localize the 
centre of the detected features. Such detections still need to be properly mapped as 
polygonal shapes by users. Since this is a highly time-consuming and tedious task, it 
led to the development of a new tool based on Deep Learning Instance 
Segmentation, to retrieve not only point coordinates of the detected features, but 
also a polygonal shape. The obtained results were then compared to the results 
obtained with the previous tool and with the MGC^3 database (Cushing et al. 2012, 
2015), showing good results. A publication and this new tool will be released soon.  
 
Results of this science case were presented at the LPSC2021 (see presentations on 
the ML Portal).  
 
References:  
Cushing, G., et al. (2012), Candidate Cave Entrances on Mars, J. Cave Karst Stud. 74, 
33–47, doi:10.4311/2010EX0167R 

Cushing, G.E., et al. (2015), Atypical Pit Craters on Mars: New Insights from THEMIS, 
CTX, and HiRISE Observations, J. Geophys. Res. (Planets) 120, 1023–1043, 
doi:10.1002/2014JE004735 

Nodjoumi, G.,  DeepLandforms-YOLOv5. Available online: 
https://zenodo.org/record/4430015 (accessed on 15 December 2021). 
 
DLR Surface Composition Science Case 
In this science case, Mercury surface reflectance data from the MASCS instrument 
onboard the NASA/MESSENGER mission is analysed. First, NASA/PDS data is 
converted in a relational DB (PostgreSQL). Then the data is regridded with custom 
Postgis/PostgreSQL spatial queries. This produces a global hyperspectral data cube 
image of normalized MASCS visible (VIS) detector spectra, from the first Earth year of 

https://github.com/epn-ml/DeepLandforms-YOLOv5
https://ml-portal.oeaw.ac.at/doku.php?id=conference_presentations
https://zenodo.org/record/4430015
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the orbital mission. The cube contains some anomalies, in regions of low coverage or 
from high levels of spectral variation within a single pixel. Thus, data artifacts, 
instrumental and photometric residual effects are all removed. The resulting data 
cube has several hundred features that are compressed via blind signal demixing 
with Independent Component Analysis (ICA). Initial results show that four 
components reconstruct the original dataset within the measurement estimated 
error. The four features were embedded in a two-dimensional space via Uniform 
Manifold Approximation and Projection (UMAP). No significant small-scale 
morphology was found after exploring UMAP hyperparameters. Finally, the 2D maps 
were partitioned with hierarchical agglomerative clustering. Dendrogram gap 
analysis shows a big gap between data partition in three and four clusters, and three 
clusters have been chosen as a significant data segregation. At this initial stage, the 
existence of two large and spectrally distinct regions have been found, which have 
been designated the polar spectral unit and the equatorial spectral unit (see Figure 
7). 
 

 
 
The spatial extent of the polar unit in the northern hemisphere generally correlates 
well with that of the northern volcanic plains and partially to the surface highest 
temperature models in the equatorial region. This may indicate an interaction 
between mineral composition and structure and surface temperature, because 
Mercury reaches a diurnal temperature above 700 K. Chemical data spatial 
distribution from X-ray and Gamma ray spectrometers show no apparent correlation 
with the clusters. This could indicate that chemical composition produces no 
distinctive mineral phases for the instrument or that those phases were altered 
enough to be indistinguishable by the harsh space environment around Mercury. 
Further analysis indicates the presence of smaller sub-units that lie near the 
boundaries of these large regions and may be transitional areas of intermediate 
spectral characters. 
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First results of the science case were presented at EGU21 (see presentations on our 
ML Portal). 
 
AOP Asteroids Science Case 
The goal of this science case is to search for asteroids thought to exist along the 
Earth's orbit that may be leftover material from the formation of our planet. These 
asteroids always appear close to - or even behind - the Sun in the sky and are 
therefore difficult to detect from Earth. Images taken from the two STEREO probes 
which have been studying the Sun and its vicinity since 2009 will be used as the basis 
for the science case. The spacecraft have been slowly drifting along the Earth's orbit 
and are able to image the sky from different vantage points around the Sun. This 
enables the abundance of asteroids in Earth-like orbits to be constrained, including 
any large (hundred-metre to kilometre size) objects in unstable paths that are not 
picked up by surveys and present a long-term impact hazard to our planet. 
 
Development in this science case is still ongoing. After first inspection of the 
corresponding data, we came to the conclusion that we have to reconsider our 
approach. We might also need to refine and/or re-define the science case.  
 

Task 6 - Virtual Access and Interfaces 

 

The Machine Learning Portal provides the public point of entry to our ML activities. A 
first draft of how JRA4 services can be onboarded into the EOSC has been provided 
in year 1 of the WP, including a description of the EOSC, EOSC portal and hub, and 
the European Grid Infrastructure (EGI). Onboarding a service into EOSC means that 
the service is listed in the portal of the EOSC site (like a shop window) but is hosted 
by the service provider. The EOSC expects mature services (TRL8/9) to be 
onboarded. Further possibilities to onboard ML demonstrator services on the EOSC 
are being explored. A preliminary list of requirements for onboarding has been 
identified. 
 
Given the high level of TRL needed to onboard a tool/service to the EOSC, this 
approach might not be feasible. Thus, we are looking for alternatives. 
 

The EXPLORE platform (https://explore-platform.eu) is a development platform 
whose main purpose is to validate, test and demonstrate the scientific data 
applications (SDAs) being delivered by the EXPLORE project. These SDAs will 
subsequently be deployed also on other platforms – when these are ready – such as 
ESA Datalabs and ESCAPE SAP. This portability is key to bring the SDAs close to the 
data. 
  
A joint effort between Europlanet RI 2024 and EXPLORE is now ongoing to update 
the EXPLORE platform to allow the deployment of JupyterLab-type applications (a 
technical update is necessary to run JupyterLab based docker images) which will be 
used to deploy the Jupyter notebooks. The LMSU boundaries ML pipeline will be 
used as its first demonstrator to be ready in spring of 2022. 
  
The following restriction are to be noted: 

https://ml-portal.oeaw.ac.at/doku.php?id=conference_presentations
https://ml-portal.oeaw.ac.at/
https://explore-platform.eu/
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1. Only registered users can run SDAs on the platform, this is needed for 
resource management and also to attach the user’s workspace to the running 
SDA. In this early phase of EXPLORE the registration is upon 
invitation/request. In the longer-term self-registration may be added. 

2. The EXPLORE platform is (currently) a development platform, which means 
that it has limited computing resources in the back-end. In the longer term it 
is foreseen to add elasticity to the infrastructure resources and evolve it to an 
operational service. 

 
The deployment of tools in the ESA Datalabs is also being investigated. 
 
A document entitled “Deployment of ML services on cloud environments”, which is 
an update of the draft document of year 1 and which summarizes possible options 
for making our ML pipelines available on other platforms, was compiled.  
 

c.      Impact to date 

 

We have a rising number of visitors on our ML Portal. At different occasions, e.g. 
conferences, we have presented results of our science cases as well as our ML 
activities in EPN-2024-RI. We have published one publication with ML contribution, 
there will be at least four more publications in 2022. We have organized and 
convened two conference sessions specifically dedicated to ML in planetary sciences 
and heliophysics (and we will organize such sessions again in 2022). Two workshops 
were conducted in the course of EPSC2021 to introduce our ML pipelines to the 
scientific community. 
 

 

d.    Summary of plans for Year 3  

 

There is one milestone (MS51 - ML Demonstrators implemented and tested) 
scheduled for the end of June 2022 and one deliverable (D10.3 - Tutorial on Machine 
Learning and Basic How Tos (initial release)) scheduled for the end of July 2022. 
 

At the moment, we are drafting publications with the results of the IWF ICME, the 
LMSU boundaries, the GMAP mounds, and the GMAP pits science cases. We will 
finalize the integration of first data sets of our science cases into VESPA by April 
2022. Further, we will integrate first ML pipelines into SPIDER and the EXPLORE 
platform.  
 
We organized two ML sessions, one at the EGU 2022 and one at the JpGU 2022. The 
Fireballs workshop #2, which ML organized together with NA2, will be on 4-5 
February 2022; the third one in this series will be held in late fall/early winter 2022. 
We plan to have our next ML workshops introducing new ML pipelines in spring as 
well as in fall 2022.  
 
Finally, we will start to work on the last two science cases (IAP waves, INAF spectra). 
 

https://datalabs.esa.int/


 

  

Ref. Ares (2020)192262 - 13/01/2020 

 

Europlanet 2024 RI Page 21 

 

2 Update of data management plan 

 

An update of the Data Management Plan (DMP) is due end of March 2022. 
 

3 Follow-up of recommendations & comments from previous review(s) 

 
The report of the VA Review Board was received in December 2020. We want to 
underline that WP10 is not a VA, but a JRA, and thus it cannot be reviewed in the 
same manner as the other VAs.  
We have reacted on the comments and recommendations of the VA Review Board in 
the first annual report (D10.1) and have 

 updated our DMP, 

 set up a public GitHub account,  

 looked for and investigated alternatives to EOSC, 

 added more content to our ML Portal and to the GitHub repositories 
including tutorials for our ML pipelines, and 

 set up a schedule for the integration of ML data and tools to VESPA and 
SPIDER and started the integration. 


