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Executive Summary / Abstract:   
 
This deliverable describes the products and tools related to the GEM-Mars General 
Circulation Model (GCM) provided to the VESPA project. The atmospheric fields from 
the simulations can be used as a reference, for inputs to retrieval codes and other 
models, and comparisons to observations from the surface or orbit. Properties and 
composition of the simulated atmosphere are given over the whole planet with 
seasonal and diurnal cycles represented. Two simulated years are provided, one of 
which includes the global dust storm of 2018 (Mars Year 34) and the next year with 
lower dust conditions.  
As the dataset is very large, a web interface is used to provide the user with a way to 
access the data for user-defined point on the globe for a specified time. 
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1. Explanation of D6.3 Work & Overview of Progress 

 

a) Objectives 

Powerful and flexible atmospheric modeling capabilities are a vital and necessary tool 
in addition to an increasing observational dataset to enhance our understanding of 
the processes taking place in the Martian atmosphere.   
The GEM-Mars three-dimensional general circulation model takes advantage of the 
cutting-edge efforts made by the numerical weather prediction (NWP) community by 
using the operational framework and dynamical core of the Global Environmental 
Multiscale (GEM) model from the Recherche en Prévision Numérique (RPN) division 
of Environment Canada (Côté et al., 1998a, 1998b; Yeh et al., 2002). The terrestrial 
model has been adapted for the simulation of the Mars atmosphere.  
GEM-Mars is described and evaluated in Daerden et al. (2015), Neary and Daerden 
(2018), Smith et al. (2018), Daerden et al. (2019), Neary et al. (2020), Bouche et al. 
(2021), Newman et al. (2021) and Daerden et al. (2022).  
The model is operated on a horizontal resolution of 4° × 4° (45 by 90 grid points) and 
on 103 hybrid vertical levels ranging from the surface to about 150 km altitude, with 
a time step of 30.8246 min (1/48th of a Mars solar day or sol). GEM-Mars contains 
routines for radiative transfer through an atmosphere containing CO2 gas, dust, and 
water ice clouds, and also for subsurface heat transfer (including shallow subsurface 
ice at high latitudes), for turbulent convection in the Planetary Boundary Layer (PBL), 
for molecular diffusion and gravity wave drag. The model has a CO2 
deposition/sublimation cycle and an interactive surface pressure correction. The 
vertical distribution of dust can be either self-consistently calculated from dust that is 
lifted from the surface by shear wind stress and dust devils (Daerden et al., 2015, 2019; 
Musiolik et al., 2018; Neary & Daerden, 2018), or prescribed using a predefined 
vertical profile shape (Neary et al., 2020). In both cases, dust total optical depths and 
their spatiotemporal variation can also be chosen to be constrained by a dust optical 
depth climatology, such as those provided by Montabone et al. (2015, 2020).  
 

b) Explanation of the work carried in WP 

The data provided are from simulations described in Daerden et al. (2022). Global 
coverage of a single Martian day (sol) is provided every 10 solar longitudes so that 
seasonal and diurnal cycles are represented. Two simulated years are provided, one 
of which includes the global dust storm of 2018 (Mars Year 34) and the next year with 
lower dust conditions.  
Fields included are profiles of temperature, pressure, air density, mixing ratios of CO2, 
H2O (vapor and ice) and O3. Surface values of temperature, CO2, and H2O ice are also 
given with the local time and solar zenith angle. The fields are provided on a 4x4 grid 
with 103 vertical levels, and at 48 time-steps per Martian day. 

The GEM-Mars dataset is 66 GB and is too large to be gathered on a web server. 
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The interpolation methodology is very similar to the one documented in the MCD 
user manual. Based on the year, the routine finds the 4 Ls and LST pairs that bound 
the user-supplied geometry. For each pair, the GCM fields are interpolated to the 
target latitude and longitude using bi-spherical interpolation. These 4 pairs are then 
interpolated to the target Ls and LST using bi-linear interpolation. Finally, the surface 
topography is interpolated from the MOLA database, and the final atmospheric 
altitude and pressure grid are adapted to the change in surface topography.  
 
To provide a user-friendly interface to this large dataset, we provide a web interface 
that interpolates the GEM-Mars dataset to user-supplied geometry. The user-
supplied geometric fields are Mars Year, solar longitude, latitude, longitude, and 
local solar time. The interface decalls a routine that performs the interpolation and 
returns a VOTABLE (XML page).  
The data service is set up with DaCHS software installed on Debian Buster. The 
metaparameters are EPN-TAP parameters. The “granule uid” parameter is of the 
form “GEM-Mars_myearA_latB_lonC_lsD_lstE” where A is the Martian year (34 or 
35), B is the latitude (degree), C is the longitude (degree), D is the solar longitude 
(degree) and E is the local solar time (0-24). The data can be provided for any 
combination of those coordinates and time. The metaparameters are ingested in the 
database with the mixin tool. The “access_url” launches a python WSGI API that 
reads the parameters in the URL, processes the interpolation among the GEM-Mars 
data and returns a VOTABLE for reading with a VO tool like TOPCAT. An example of 
“access_url” is https://gem-mars.aeronomie.be/vespa-gem?myear=34&lat=-
88&lon=328&ls=0&lst=2 and follows the same nomenclature as the “granule_uid” 
described previously. The VOTABLEs are generated “on the fly” at user request and 
take less than 3 seconds; this time can be further decreased. As the data is 
generated “on the fly”, the only data storage required is for the table of 
metaparameters containing millions of examples of queries to the GEM-Mars 
dataset (4 GB). 
 

The GEM-Mars data service is accessible through the VESPA portal 
(http://vespa.obspm.fr/planetary/data/display/?&service_id=ivo://bira-
iasb/gem_mars/q/epn_core&service_type=epn) and other TAP clients by the IVOA 
registry of registries. The metaparameters are also accessible on the BIRA-IASB 
DaCHS (http://vespa-ae.oma.be/). (note: there are currently difficulties to generate 
the output VOTables in some configurations, which are being processed) 
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