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Executive Summary / Abstract:   
 
Planetary geologic and geomorphic mapping for targeting resource mapping, such as volatiles 
and mineral resources are introduced. Main applications and drivers for resources on 
planetary bodies, mainly the Moon and Mars, are listed. The type of resources and their 
geologic context and related processes are introduced. Methods, techniques and datasets 
used in the search for resources are introduced and briefly described. Exemplary mapping and 
scientific efforts are listed. Future applications of earth-based mineral resource prospection 
and mapping will be needed, provided suitable datasets are available. 
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● List of acronyms and abbreviations 

Table 1: Acronyms and abbreviations  

Acronym Description 

API Application Programming Interface 

CaSSIS Colour and Stereo Surface Imaging System  

CRISM Compact Reconnaissance Imaging Spectrometer for Mars 

CUGB China University of Geosciences Beijing 

ESA European Space Agency 

FAIR Findable, Accessible, Interoperable, Reproducible 

FREND Fine Resolution Epithermal Neutron Detector 

GUI Graphical User Interface 

HiRISE High-Resolution Imaging Science Experiment 

ISRU In situ resource utilisation 

JRA Joint Research Activity 

KREEP Potassium, Rare Earth Elements and Phosphoros 

LIPs Large igneous provinces 
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LMO Lunar Magma Ocean 

NA Networking Activity 

NS Neutron Spectrometer 

MARSIS Mars Advanced Radar for Subsurface and Ionosphere Sounding 

MEX Mars Express Spacecraft 

MOST Ministry Of Science and Technology 

MRO Mars Reconnaissance Orbiter 

MSR Mars Sample Returns 

NASA National Aeronautics and Space Administration 

OMEGA Observatoire pour la Minéralogie, l'Eau, les Glaces et l'Activité 

PDS Planetary Data System 

PSA Planetary Science Archive 

RDM Research Data Management 

SHARAD Shallow Radar 

TGO Trace Gas Orbiter 
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USGS United States Geological Survey 

UVVIS Ultraviolet visible camera 

VA Virtual Access 

 

Introduction 

 
A variety of natural resources can be found at the surface of Inner Solar System terrestrial 
planetary bodies. While their exploitation for Earth applications does not seem economically 
viable (at least in the near future), long-term human missions to the Moon or Mars might 
benefit and take advantage of locally available resources. For example, as payload capacity is 
limited in space travel, the locally available water, building material or even locally produced 
fuel could allow more ambitious and longer-term missions.  
 
This document intends to provide references and introductory materials regarding natural 
resources that can be found on the planetary bodies that will be targeted for future human 
exploration, that is Mars and the Moon. After a non-exhaustive overview of resource types 
and reservoirs, as well as the associated geological processes, exploration methods and 
implementation of geological mapping are discussed below.  
 

 

Figure 1: Workflow proposal on In-Situ energy and fuel production from H2O. Credit: ESA-
PANGAEA. 
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1. Resource applications 

1. 1.1. In-situ propellant production 

 
During the Apollo program, a fully-fuelled Saturn V rocket had a mass of more than 2800 tons 
whereas its dry mass was more than 10 times less, highlighting the staggering proportion of 
propellant mass with respect to the launcher's total mass. The ascent stage of the Apollo Lunar 
Module had a dry-mass equivalent of 44% of the total mass. The amount of propellant 
required for lift-off represents a constraint to the mass of the payload that every mission is 
able to put in space, limiting propeller availability for the return to Earth. If alternative sources 
of fuel could be used (i.e., exploiting materials available on the Moon's surface), the prices 
and efficiencies of the missions may improve greatly. While taking off the surface of the Moon 
is a technical challenge (even with its low gravity and lack of atmospheric drag), it is relatively 
easier than leaving Mars' surface. Consequently, no mission has ever attempted to take off 
from the surface of Mars to reach Mars’ orbit.  Through several missions in the coming years, 
the NASA-ESA joint Mars Sample Return (MSR) campaign intends to return back to Earth the 
first samples from the surface of Mars, (Meyer et al., 2022). Therefore, it is clear that in-situ 
propellant production is one of the keys to allow long-term return missions to the Moon, and 
Mars. 
 
On the Moon, proposals have been made to produce fuel and oxidizer by extracting H2 and 
O2 from potential water ice reservoirs in shadowed craters, regolith or hydrated minerals 
(Figure 1) (Anand et al., 2012). On Mars, atmospheric CO2 combined with H2O found in water 
ice reservoirs could be used to produce CH4 and O2 through the Sabatier reaction (Starr and 
Muscatello, 2020).  
 

1.2. Building material for habitats and resources for survivability 

 
Another solution to reduce the payload at launch and allow long-term missions would be the 
construction of a habitat for future astronauts employing locally available materials. On the 
Moon, several proposals were made to use widely available lunar regolith to produce concrete 
which could be used to build shelter for astronauts (Cesaretti et al., 2014, Davis et al., 2017). 
With such material, the thick-walled and sustainable habitat would protect them from 
extreme temperatures, radiations or micro-meteorite impacts. The production of such 
material may require water; however, some studies proposed some synthesis solutions that 
would not require any (e.g. Wang et al., 2017). 
 
Although metallic and non-metallic mineral resources are more complex to use, they could 
become valuable assets for industrial purposes in later stages of exploration. For example, it 
is probable that lunar or Martian habitats will rely on solar cells to obtain energy, hence the 
use of locally gathered silicon and other metals would facilitate the production and 
maintenance of these systems and the associated electrical infrastructure (Abbud-Madrid, 
2017). Metals are also valuable in several other technological applications, and as they can be 
by-products of first-need processes, such as the extraction of oxygen by metalysis (Lomax et 
al., 2020), their eventual exploitation would facilitate a sustained presence of humans in 
space. 
 
Extracted oxygen and water from mineral water-ice resources could be used for survivability 
as well and would reduce the need of a full-recycling process as it exists onboard the 
International Space Station. This would add redundancy to survivability, increasing the 
astronauts’ safety, and reduce regular supply needs in material related to it. 
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2.  Resource type, reservoirs and geological processes 

2.1. Water and other volatiles 

Since the beginning of lunar exploration, due to extreme temperatures during the diurnal 
phase and the lack of atmosphere, the surface of the Moon was thought to be completely 
deprived of volatiles. However, recent observations have revealed that water is present today 
at the surface of the Moon in the form of ice (Feldman et al., 1998), hydroxyl (OH) in mineral 
phases and absorbed within regolith grains (Clark, 2009; Pieters et al. 2009), within volcanic 
glasses (Saal et al. 2009).  

Similarly to the Earth, primitive water could have been delivered to the Moon during late 
accretion through comets and chondritic asteroids (Svetsov and Shuvalov, 2015). Among the 
various mineral phases found in lunar samples collected during the Apollo program, only 
apatite has been found to contain a measurable amount of hydroxyl, with a concentration up 
to ~15000 ppm and ~3400 ppm in lunar mare and highland samples, respectively (Barnes et 
al., 2013, 2014).  

It was suggested that permanently shadowed craters could exist on the polar regions of the 
Moon where the sublimation rate of any water ice there would be low enough for it to be 
preserved over several billions of years (Watson et al., 1961, Siegler et al., 2015).  

On Mars, water ice is extensively present at the poles (e.g., Titus et al., 2003; Vos et al., 2022), 
but groundwater ice appears to be also spatially widespread at mid to high latitude, including 
at shallow (i.e., relatively accessible) depths (e.g., Harish et al., 2020). Hydrated minerals are 
instead frequent all over the Martian surface (Carter et al., 2013, 2022; Riu et al., 2022).  

2.2 Mineral resources 

The search for volatiles in planetary settings has been a strong research topic in recent years; 
this is logical as fuel supply and life support systems are the primary challenges as space 
exploration is entering a new era of hopefully extended presence of humanity on extra-
terrestrial bodies. Although the importance of volatile exploration is indisputable, there is no 
harm in looking ahead to the mineral resources that would eventually support industrial 
processes and habitability on the Moon and Mars. 

Mineral resources can be roughly divided into metallic and non-metallic for description 
purposes. The first ones are related to typical industrially used metals such as Fe, Al, Ti, Mg, 
Cr and the platinum group elements (PGE - Pt, Ir, Os, Ru, Rh, Pd) (Crawford, 2015); and the 
non-metallic are other useful light elements such as Si, O, P, S and N mainly. All the prior 
elements are somewhat available on the Moon and Mars, so it is worth understanding the 
geological processes that can lead to their concentration. 

2.2.1 Primary differentiation 

The geological configuration of the Moon and the resources associated with it are greatly 
defined by its early formation stages and the modification processes that followed. The most 
widely accepted theory about the formation of the Moon is the giant impact, where a Mars-
sized object impacted the Earth (Hartmann and Davis, 1975). Two significant consequences of 
this process are the near absence of volatiles in the lunar mantle and crust (Geiss and Rossi, 
2013), and the subsequent formation of the Lunar Magma Ocean (LMO). This enabled a strong 
differentiation between an olivine-pyroxene-rich mantle, a middle layer enriched with 
incompatible elements called KREEP, and a plagioclase-rich crust (Hubbard et al., 1971). From 



 

  

Ref. Ares (2020)192262 - 13/01/2020 

 

Europlanet 2024 RI Page 8 

 

this initial state, the geologic evolution of the Moon can be divided into four big stages, which 
define the current lunar terrains. 

First, the crystallization of the LMO occurred around 4.4 Ga (Nemchin et al., 2009), giving place 
to the lunar highlands, mainly composed of ferroan-anorthosite (FAN), due to the strong 
differentiation suffered by these rocks, they are usually enriched in Al and Ca, which is 
reflected in their derived soils, which may be recoverable. The second stage corresponds to 
the emplacement of intrusive rocks in the lunar crust, and although they can hardly have 
reached the surface due to their high density, secondary processes such as massive impacts 
could have excavated them. The lunar intrusive rocks vary in composition, but the samples 
returned by the Apollo missions showed interesting concentrations of Cr in chromite and Cr-
spinel, Fe-Ni-metal, and phosphates enriched in REE such as apatite and RE-merrillite (Shearer 
et al., 2015). In the third stage, between 4.1 and 3.0 Ga (Hartmann and Davis, 1975), the lunar 
maria formed by the impact of large asteroids, as large volumes of basaltic lavas filled the 
basins created after the collisions. Lunar maria are probably the most desired locations for 
mineral retrieving, as they are typically enriched in Mg, Fe, O, Si, and Ti (Anand et al., 2012, 
Rasera et al., 2020). Finally, the late stage consists in the later modification of the prior rocks 
by space weathering and tectonics, which will be addressed afterwards.   

The KREEP rocks deserve a special mention, as they are a primary target due to the amount 
of rare elements present in them (Figure 2). Their name comes from their enrichment in K, 
REE, and P. They are mainly accumulated in the Imbrium and Procelanum basins, but lower 
accumulations are also present in other ancient locations such as the Apollo basin. These rocks 
are thought to have formed between the crust and the mantle, as an accumulation of 
incompatible elements, although it is not clear how they reached the surface, they may have 
been incorporated in the upwelling basalts that filled the basins (Warren and Wasson, 1979) 
or exposed and ejected by the Imbrium basin impact at its margins and surroundings 
(Hiesinger and Head, 2006)  

 

Figure 2: Distribution of KREEP rocks on the surface of the Moon, which is related to the 
amount of Th (Jolliff et al, 2021). 
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The case of Mars is more complicated, as the red planet has overcome several episodes of 
resurfacing and its early geological configuration is not totally clear. If Mars had a global 
magma ocean in its first millions of years of existence, it is believed that it quickly 
differentiated into crust, mantle, and core (Kruijer et al., 2017). The Martian crust is 
considerably less differentiated than that of the Earth, so it had a bulk mafic composition, with 
occasional anorthositic terrains in the older terrains. Following the initial differentiation, the 
Martian surface was the subject of massive volcanic extrusions, fed by mantle plumes that 
lasted several millions of years. These activities created large igneous provinces (LIPs), 
especially around the Tharsis region, where multiple shield volcanoes and pateras dominate 
the landscape. On the Earth these geological settings tend to be enriched in siderophile 
elements such as NI, Cu, Ti , PGE, Fe; so similar deposits could be expected on Mars, especially 
around Vallis Marineris and the walls of big impact craters, where older sequences may be 
exposed (West and Clark, 2010). 

Other less understood and potentially interesting systems are dyke swarms, emplaced during  
late-stage magmatism in structurally weak regions. They can vary in scale, from generating 
large grabens around the Tharsis region to covering the floor of the Chasmata that lies parallel 
to Vallis Marineris (Mège and Gurgurewicz, 2016). Basaltic dykes on Earth are associated to 
important ores of PGE, Au, Pt and Cu, so they could be an interesting target on Mars, especially 
the ones that show relationships with water-rich systems, for example in the floor of Ophir 
Chasma or the Syrtis Major region (Bramble et al., 2017).    

2.2.2 Hydrothermal and other secondary processes 

The accumulation of ore minerals can also be the result of secondary processes, and in some 
cases, it might be even greater than in primary sources. The most sought of these 
environments are the ones related to hydrothermal alteration of pre-existing rocks, as they 
have been a major source of valuable minerals on Earth. Other examples of secondary systems 
are evaporitic deposits, mineral-enriched sediments, and crater impact systems. 

Hydrothermal activity on the Moon should be most probably discarded due to the lack of 
water in its interior (Geiss and Rossi, 2013). Nevertheless, other volatiles may have played a 
role in the formation of apatite veins and the few pyroclastic deposits that have been detected 
on the Moon's surface (Jolliff et al, 2021). These volatiles, probably rich in S, and CO2, might 
have mobilised important recoverable quantities of Fe, Ni and Co (Shearer et al., 2015). On 
the other hand, hydrothermal activity is probably a game-changer in terms of Martian 
resources availability. It is already well known that in the Noachian and Hesperian period of 
Mars, water was present both on the surface and in subsurface systems, which in combination 
with the extended volcanic activity in the Tharsis region, created an optimal environment for 
hydrothermal alteration to occur (West and Clark, 2010). The advantage of hydrothermal 
alteration is the constant mobilisation of metals by fluids enriched in Cl, S, P, or CO, which 
could give place to the accumulation of several valuable metals (Zn, Pb, As, Ag and Au). A 
special type of hydrothermal activity is the one induced by meteoritic impacts, which are 
common on Mars. In this scenario, the circulation of heated fluids and cooling melts mobilise 
metals from the crustal rocks and the meteorite itself (West and Clark, 2010). These scenarios 
are particularly attractive, as the extreme stress during the impacts would have formed 
severely fractured regions where the fluids could mobilise and deposit their load (Figure 3). 
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Figure 3: Structure of and hydrothermal system induced by a meteoritic impact  (from West 
and Clark, 2010). 

The wet past of Mars is not only important for its role in the hydrothermal activity, but other 
processes also involving water diversify on resource opportunities on Mars compared to the 
Moon. The ancient water reservoirs on Mars are usually covered by large sequences of 
phyllosilicates, hydrous sulphates, oxides, and evaporitic deposits. All the prior groups of 
minerals contain valuable industrial materials such as gypsum, kieserite, jarosite, hematite, 
montmorillonite, and others (Wang et al., 2006). Two remarkable examples of these processes 
are the “blueberries”, hematite spherulites found by the Opportunity rover, and the large 
deposits of phyllosilicates and sulphates across the floor of Vallis Marineris. 

Finally, the action of the wind is strong on Mars and might play an important role in sorting 
and concentrating minerals. As mentioned before, the Martian crust has a general basaltic 
composition, so minerals like chromite and ilmenite should be eventually sorted and 
concentrated in black eolic sands and dunes (West and Clark, 2010). 

2.3.3 Regolith 

The regolith is an important component of planetary surfaces, especially on the Moon, where 
extended endogenic processes stopped billions of years ago. The regolith is the cumulus of 
unconsolidated debris produced during meteoritic impacts, it covers basically all of the lunar 
surface and it might even have several tens of metres of thickness. The regolith is mainly 
composed of lithics, agglutinates, glass, and some mineral crystals (McKay and Ming, 1990). 
Due to its extended presence and its mineral variability, the regolith can be the first resource 
to be exploited in human exploration. Apart from hosting potential fuel propellants and water, 
it can be a source of oxygen and iron, thermo-chemical reduction and metalysis processes 
have been proposed to this end (Rasera et al., 2020). Other potential uses of regolith is as 
construction material for lunar basecamps, its capability to shield cosmic radiation is 
promising and some ideas of creating “lunarcrete” from regolith have been brought before 
(Osio-Norgaard and Ferraro, 2016, Meurisse et al., 2020). 

Martian regolith would represent a similar type of resource to the one on the Moon. 
Furthermore, due to its wider mineralogical diversity, it might even be suitable for agricultural 
purposes, as it contains the main elements needed for the proper development of plants, 
although their high salinity might be a concern (Fackrell et al., 2021).  
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3. Detection and reservoir size estimation 

3.1. Earth analogues/terrestrial methods 

 
The detection of mineral resources in planetary settings is not an easy task, as usually the only 
way to obtain information about these rocks is through remote sensing. The estimation of the 
size and quality of the reservoirs is even more difficult, because of the lack of physical samples 
to do geochemical analysis, hence there is no reliable way to measure the actual 
concentrations, distribution or mineral assemblages of the reservoirs. For this reason, the 
comparison with proven reservoirs on Earth is useful. If a deposit on our planet has the same 
bulk composition and geologic history as the ones on the Moon and Mars, it is possible that 
similar element concentrations can occur. Although in no way can this approach confirm the 
existence of a deposit, it at least allows us to discriminate the valuable mineral that could 
possibly be encountered in those bodies. 
 
In both Mars and the Moon, the basaltic compositions of their crust constraints significantly 
the comparisons with Earth, and the difference between the two would be the almost 
complete lack of volatiles in the Moon. Probably the most relatable analogues are those that 
originated within basaltic districts; a good example is the Stillwater Mafic Complex in the 
United States, a Precambrian mafic and ultramafic intrusion that has been mined for more 
than 100 years to obtain Cr, Cu, PGE, Fe and coal (Page, 1997). As mentioned in the prior 
section, mafic intrusions were common during the evolution of the Moon and Mars, so similar 
deposits might be possible. Another good example is the Great Dyke of Zimbabwe, a massive 
intrusive structure that is the second largest deposit of PGE on Earth (Naldrett and Wilson, 
1990). Another possible scenario, derived from the large intrusions, is the contact 
metamorphism of hosting rocks and the mobilisation of elements, although harder to spot 
due to its small-scale action, some Apollo samples were classified as hornfels (Pernet-Fisher 
and Joy, 2021), allowing the possibility of deposits associated with contact metamorphism. 
 
With regards to possible hydrothermal alteration systems on Mars, there are several examples 
on Earth that could very well represent what can be found there. The hydrothermal alteration 
of the Northwestern Norrbotten ore Province in Sweden occurs mainly over basaltic 
sequences and is enriched with iron oxides, Au and Cu (Andersson et al., 2020). Special 
scenarios are the hydrothermal systems related to meteoritic impacts, even as these events 
are less likely to happen on the Earth than on Mars, they are usually important locations for 
mineral exploration. The Sudbury basin is one of the biggest Ni and PGE reservoirs on Earth, 
and other craters have been also mined or potentially contain diverse deposits (James et al., 
2022). 
 
Another two examples are the “blueberries” (Chan et al., 2004), which have been also found 
on Earth, as the hematite marbles in India (Ray et al., 2021); and the basaltic dunes formed 
around volcanoes in Iceland and other volcanic islands (Edgett & Lancaster, 1993).   
 

3.2 Spectroscopy 

 
The most powerful tool available for the compositional analysis of planetary surfaces is 
spectroscopy, a technique that usually takes advantage of the particular reflectance of each 
mineral across the light spectrum (Zambon et al., 2020). Instruments can be multispectral or 
hyperspectral, the first ones cover only a few wavelengths (usually 8 or 9) and the second have 
a wide spectral coverage and a smaller sampling interval (around 50 to 80 channels). The 
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sampling interval is known as spectral resolution, which in combination with the spatial 
resolution (pixel size) defines the capabilities of the spectrometer.  
 
Both types of spectrometers have been used in the exploration of the Moon and Mars, either 
in global or local analysis. Multispectral sensors allow the creation of band composites, a 
technique that highlights the relationships between wavelengths and hence, between their 
mineralogical properties. The Ultraviolet visible camera (UVVIS) on board the Clementine 
mission was a multispectral sensor that scanned the whole surface of the Moon, one of the 
most interesting products of this mission is the global UVVIS colour ratio, a band composite 
that is sensible to the presence of titanium and iron in the surface (Figure 4)(Lucey et al., 
2000). Another example of a global mosaic is the thorium global map, that was constructed 
with the Gamma-ray data of the lunar Prospector, and is used to find regions enriched in 
KREEP (Hagerty et al., 2006). 

 
Figure 4: Global UVVIS colour ratio of Clementine. The red channel represents areas that are 
low in titanium, or high in glass content, the green channel is sensitive to the amount of iron 
on the surface, and the blue channel reflects the surfaces with high titanium (USGS, 2015). 
 
Although multispectral data can be useful to spot the main differences between terrains, 
hyperspectral data is necessary to identify specific mineral species. M3 is a hyperspectral 
sensor onboard Chandrayaan-1; it has a good spectral resolution, but its spatial resolution 
does not completely allow local analysis. Nevertheless, explorations at local and regional 
scales are possible and had shown important results. Klima et al. (2011) identified locations 
with low Ca-pyroxene, which in turn points to locations where ancient plutonic bodies (and 
their mineralizations) might be outcropping at the surface. Other important spectral indexes 
that can be applied to M3 data were compiled by Zambon et al. (2020), and even if they don't 
allow the recognition of specific mineral species, they are powerful tools to characterise the 
geological setting that could host mineralizations. 
 
The spectral information of Mars is considerably better, as the Compact Reconnaissance 
Imaging Spectrometer for Mars (CRISM) on board MRO (Murchie et a., 2007), or OMEGA 
(Bibring, et al., 2004) on board MEX have substantial spectral and spatial resolutions (around 
19 metres/pixel). The higher spatial definition allows detailed explorations of the Martian 
surface, especially when coupled with High-Resolution Imaging Science Experiment (HiRISE) 
data and CaSSIS on board TGO. CRISM has allowed the recognition of the mineral species 
referred to in the previous section, as the quality of the data allows a direct correlation with 
laboratory-obtained spectra (Figure 5). Good examples of the use of CRISM to recognise 
minerals are the study of Syrtis Major by Bramble et al. (2017), the characterization of 
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hydrothermal alteration in Nili Fossae by Brown et al. (2010), and the recognition of iron 
oxides and philosicates in the flows of Ophir Chasma, by Wendt et al. (2011). 
 

 
Figure 5: Some mineral spectral signatures recovered from CRISM and their laboratory 

counterparts. The quality of the CRISM spectra allows safe recognition of minerals, some of 
them potential ore minerals.  

 

3.3. Detection of ground ice on Mars 

 
Various methods of remote sensing can be used to assess the presence of water near the 
surface, either by direct detection or by the use of a proxy. On Earth, freeze-thaw cycles of 
ground ice in periglacial regions can create a range of geomorphological landforms such as 
patterned ground (Oehler and Allen, 2011), pingos (Grosse and Jones, 2011; Page and Murray, 
2006) or solifluction lobes (Johnson et al 2012). Similar features are well visible in high-
resolution remote sensing imagery and have been used to infer the presence or the past-
presence of ground ice (e.g. Mellon al., 1997, Mangold et al., 2004).  
 
Similarly to mineral deposits, spectroscopy can be used to detect water ice absorptions but 
instruments such as OMEGA and CRISM can study only what is right at the surface. In that 
case, ground ice has to be exposed by new impacts (Figure 6) (Byrne et al., 2009) or on scarps 
(Vijayan et al., 2020).  
 
Ground-penetrating radars, such as the SHARAD instrument onboard Mars Reconnaissance 
Orbiter (Seu et al., 2004) or MARSIS onboard Mars Express (Jordan et al., 2009) have been 
used to extensively study the subsurface of the polar ice caps on Mars, which are mainly 
composed of water and CO2 ices, layered with dust. Such instruments can probe the 
subsurface at variable depths (up to 500 m and 5 km, at a vertical resolution of 10-20 m and 
50 m for SHARAD and MARSIS respectively - Fois et al., 2007) and might be suited to identify 
ice patches at shallow depths or liquid water presence Stuurman et al. 2016, Morgan et al., 
2021). 
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Figure 6: New impact craters visible on HiRISE images exposing ice with a CRISM spectrum 

showing water-ice absorbtions. Impact craters are found among polygonal terrain formed by 
freeze-thaw cycles. From Byrne et al. (2009). 

 
In addition, neutron spectrometers such as the Fine Resolution Epithermal Neutron Detector 
(FREND - Mitrofanov et al., 2018) or Neutron Spectrometer (NS - Boyton et al., 2003) can be 
used to estimate the H-abundance not only directly at the surface but up to 1-2 meter below. 
Compared to surface imagers, these can provide a good estimate of the water-ice content 
located under the surface. However, one should be careful as a high H-abundance does not 
necessary implies a high-water ice content since hydrated minerals have a similar signature 
on neutron spectrometers. Compared to surface hyperspectral imaging systems, neutron 
spectrometers also have a much lower resolution (10s of meters vs 10s-100 km), therefore 
they can only be used at a larger scale.   
 

3.4. Structural patterns/geophysics 

 
Spectroscopy is clearly the most powerful tool to identify mineral deposits, but sometimes the 
data does not have the required spectral/spatial resolution, or the nature of the studied 
terrain makes their interpretation difficult. In those cases, other generalist techniques help to 
define the value of a location. 
 
Back on Earth, structural geology plays a key role in defining the viability of mineral deposits, 
faults systems are usually the main location where mineralizing fluids flow and accumulate 
their load, they can also allow igneous bodies to reach the surface. Given this importance, it 
is worth analysing the surface and subsurface geological discontinuities and structural 
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patterns in search for potential deposits. This kind of studies are not uncommon on Earth: 
Kelka et al. (2022) used both optical imagery and geophysical data to locate high-porosity 
areas in the Gawler Craton in Australia, where densely fractured areas corresponded well with 
already existing mines. As for planetary surfaces, Cañón‐Tapia & Jacobo‐Bojorquez (2022) 
defined the sub-volcanic structure beneath Marius Hills in the Moon by  analysing the 
distribution of volcanic vents. Both Mars and the Moon have good-resolution optical data, and 
gravimetry and magnetometric data, so the application of these techniques may enhance the 
estimation of potential reservoirs. Low-altitude, high-resolution data are missing, though, and 
scales comparable to those approached on Earth through airborne sensors are not achievable 
at this point. Future lander or rover-based survey platforms might offer a suitable approach 
locally. 

4. Geological mapping and modelling of resources 

 
The geological mapping of resources is basically the construction of thematic maps of 
minerals, mineral assemblages, volatiles concentration or any other resource of interest. 
Given that versatility, the implementation of resource-focused mapping can be based largely 
on the very same cartographic techniques and standards (see Naß, et al. 2020), as well as 2D 
(see Pondrelli et al., 2021) and 3D (see Penasa, et al. 2022) geological mapping approaches.  
 
Global hydrated mineral mapping on Mars has been recently achieved using OMEGA (Riu et 
al. 2022) and even CRISM data (Clark et al. 2022), whereas a good example of a detailed 
mineral mapping in a potential human landing sites can be found in Pajola et al. (2022), where 
the authors studied a water-rich zone and the associated hydrated minerals. Hagerty et al. 
(2006) refined the abundance of Th on the surface of the Moon. Wiseman et al. (2008) 
identified hematite deposits in the Miyamoto crater on Mars. 
 
Although the procedures to identify water and other volatiles are different, the mappings 
techniques and products are similar. Morgan et al. (2021) identified water ice in the northern 
latitudes of Mars. Whereas Li & Miliken (2017) did the same for the Moon. 
 
With the current datasets available for planetary exploration it is difficult to create 3D models 
of subsurface deposits. Nevertheless, similar approaches on Earth exemplify the potential 
products that would eventually be generated on the Moon and Mars with the right 
equipment. Detailed geological models can be replicated with geophysical and mineralogical 
information obtained with drill holes (Le Vaillant et al., 2017).   

5. Outlook and perspective 

 
● Planetary resource mapping is not yet well-established. This is due in part to the 

necessity of specialised data to properly define the reservoirs, but also because until 
recently the ISRU (in situ resource utilisation) has been considered something ahead 
of the state of space exploration. Both of these points will substantially change in the 
near future. 

● The present deliverable and guide serve as a starting point for the construction of 
thematic maps of resources, and points to useful examples of previous works in the 
area. 

● More prototypes and implementations of resource-based geologic/geomorphic maps 
are required, even if the current data available is not ideal for this purpose; the 
mapping community should be prepared to develop detailed resources map once 
proper data is available.  
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Note: a live version of this document will be available on the GMAP wiki at: 
https://wiki.europlanet-gmap.eu/bin/view/Main/Documentation/Resource%20mapping/ 
 
A useful collection of references related to Lunar landing site studies is maintained by the 
Lunar and Planetary Institute1. 
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