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Executive Summary / Abstract:   
 
This final report summarizes the work done in Work Package 10 ‘Machine Learning Solutions 
for Data Analysis and Exploitation in Planetary Sciences’ during the four- year period of the 
Europlanet 2024 Research Infrastructure.  The main aims of the work package are to foster 
wider use of machine learning technologies in data-driven space research and to provide 
open-source machine learning code developed for specific science cases. Work Package 10 is 
organized around six tasks that target management and coordination of the activities, the 
development of machine learning-based data analysis code and the dissemination of the 
tools, as well as integration of the results into VESPA, GMAP and SPIDER where appropriate. 
Despite delays in the development work due to the ongoing COVID-19 pandemic, work on all 
six tasks has been progressing. All proposed science cases (6 +1 extra in total) are completed 
and were uploaded to the dedicated repository: https://github.com/epn-ml/. The description 
of the scientific cases can be found at https://ml-portal.oeaw.ac.at/. A number of workshops 
have been conducted during the last three and a half years, mainly at the EPSC conferences, 
where the machine learning pipelines were presented. The tutorials of the cases have been 
implemented and uploaded on our Machine Learning Portal as well as on our public GitHub 
repository. A Jupyter book has been initiated with the ultimate goal of gathering all content 
developed in our work package. WP10 presented the achieved results through the three-year 
period at various scientific meetings. Some of them are listed here:  

• In 2021, we conducted two workshops at EPSC 2021, introducing two of our machine 
learning pipelines. We put up first tutorials on our Machine Learning Portal as well as 
on our public GitHub repositories. ML organized machine learning sessions at EGU21 
and EPSC2021, and had presentations at many conferences (LPSC2021, EGU21, 
EPSC2021, ESWW 2021, AGU Fall Meeting 2021). We started collaborations with 
national (FWF project at IWF) as well as international (EU Horizon 2020 EXPLORE 
project) research projects and started a series of fireballs workshops together with 
NA2. An EPN-TAP server was set up at the IWF, on which we started to integrate first 
data sets of our science cases into VESPA. Further, first steps were taken to include 
our pipelines in SPIDER.  

• In 2022, ML organized machine learning sessions at EGU22 and EPSC2022, and had 
presentations at many conferences (EGU22, EPSC2022, ECML PKDD 2022, ESWW 
2022, AGU Fall Meeting 2022). We have collaborations with national (FWF project at 
IWF) as well as international (EU Horizon 2020 EXPLORE project) research projects 
and started a series of fireballs workshops together with NA2. An EPN-TAP server was 
set up at the IWF, on which we started to integrate first data sets of our science cases 
into VESPA. Furthermore, next steps were undertaken to include our pipelines in 
SPIDER. 

 
Since 2020, the project has developed ML tools to handle complex planetary data more 
efficiently and provide opportunities to combine and visualise multiple diverse datasets. 
This programme has been further enhanced through a collaboration with a second 
Horizon 2020 project, EXPLORE, which is developing applications for the exploitation of 
galactic, stellar and lunar data, and provides a platform for deploying and testing ML tools 
and services. 

  

https://github.com/epn-ml/
https://ml-portal.oeaw.ac.at/
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ML Machine Learning 

MP Magnetopause 

MS Milestone 

NA Networking Activity 

PMC Project Management Committee 

SDA Scientific Data Application 

SPIDER Sun Planet Interactions Digital Environment on Request 

TRL  Technology Readiness Level 

UMAP Uniform Manifold Approximation and Projection 

VA Virtual Access 

VESPA Virtual European Solar and Planetary Access 

WP Work Package 

 

1. Explanation of WP10 Work & Overview of Progress 

a. Objectives and Description of Work 

Traditionally, science starts with a hypothesis. We develop a theory that we test 
experimentally, producing data. We analyse the data and – hopefully – the process results in 
new knowledge.  
 
The advent of ML has enabled a new approach, known as data-driven science. Using the 
wealth of datasets and streams available, ML can explore the data to find a pattern or 
commonality. Out of these initial steps comes a hypothesis that can be tested through data 
analysis, which again – hopefully – leads to new understanding. Clustering or fusing datasets, 
moreover, can reveal connections or knowledge that are not recognizable in the individual 
datasets. 
 
All ML tools of this WP are open-source, ready-to-use, and highly customisable, enabling other 
researchers to freely deploy and adapt them for their own research scenarios. 
 
The objectives and description of work for Work Package (WP) 10 ‘JRA4 ML - Machine Learning 
Solutions for Data Analysis and Exploitation in Planetary Sciences’ are as follows, quoted from 
the proposal: 
 

JRA4 will develop Machine Learning (ML) powered data analysis and exploitation tools 
optimised for planetary science and integrate expert knowledge on ML into the 
planetary community. All tools can also be linked in a future project via the VA services 
of VESPA, GMAP and SPIDER (where appropriate). 

 
The main objectives are: 

• to develop ML tools, designed for and tested on planetary science 
cases submitted by the community, and to provide sustainable, open 
access to the resulting products, together with support 
documentation 
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• to foster wider use of ML technologies in data driven space research, 
demonstrate ML capabilities and generate a wider discussion on 
further possible applications of ML 

• to identify scientific and commercial applications for the ML tools 
developed through the JRA tasks. 

 
Description of work 

 
This JRA was led by IWF-OEAW till 1 October 2022, co-led by the KNOW Centre. Since October 
it has been led by INAF and co-led by the KNOW centre.  ML-powered data analysis and 
exploitation tools were developed targeting a set of representative scientific cases selected 
from about a dozen proposals for specific applications of ML in planetary science submitted 
by the scientific user community during proposal preparation. Software developed during the 
JRA is  open source (Apache License 2.0), thoroughly documented and available via a Git 
service, so that all results can be used freely, and further developed and extended by the 
community. 
 
A public GitHub account was set up (https://github.com/epn-ml). In the public GitHub 
repositories, we will place all the documents and files that are suitable to be made public, e.g., 
descriptions of the science cases, links to publications and other relevant information, final 
data sets, working code scripts, and presentations.  
 
A website, our so-called ML Portal (ml-portal.oeaw.ac.at), was installed and serves as an 
access point to our activity. In the portal, among other content, we will provide:  
• An introduction to the ML activity within Europlanet 2024 RI  
• General information about ML  
• ML tutorials  
• Python Jupyter notebooks with different ML tools  
• Downloadable ML tools and/or links to them, i.e., Python scripts  
• Tutorials on how to use the tools and how to modify them for specific needs  
• A list of presentations and publications with results of the ML activity  
• Announcements of upcoming events (workshops, sessions at conferences, etc.). 
 
The ML-powered tools focus on three types of planetary data: time-series data, where data 
mining can reveal the dynamical evolution of phenomena or time dependent events; 
imagery, where training algorithms to recognise features can support automated mapping 
and classification of common characteristics; and other kinds of data, for example spectral 
data, where characteristics like composition or surface ages can be identified. 
 

Work Package Beneficiaries 

Apart from the WP lead, IWF-OEAW, there are eight beneficiaries contributing to our WP. 
Table 1 lists the acronyms of the WP beneficiaries as used in the Europlanet 2024 Research 
Infrastructure (EPN2024-RI) proposal and their corresponding institutions.  
 
Due to sanctions against Russia, the participation of LMSU has been terminated. One science 
case about the automatic detection of boundary crossings around the planet Mercury was 
proposed by LMSU.  Since this science case was finished before the sanctions against Russia 
were installed, the termination of LMSU’s participation in the Europlanet 2024 Research 
Infrastructure does not have any effect on WP10. 
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Science Cases 

The science cases proposed by the planetary science community during proposal preparation 
are listed in Table 2. The proposal by GMAP covers different cases dealing with the detection 
and classification of various planetary surface features, such as mounds and pits. In Figure 1 
we have clustered the scientific cases according to the main type of data. The two cases listed 
in the cluster ‘Other’ use spectral data, which basically do not fall in one of the other two 
categories, but both may influence each other, and both may benefit from the codes 
developed for the other cases. The idea behind the clustering is that the science cases within 
one cluster can be tackled with similar approaches. Thus, the codes/tools developed for one 
of the cases can be used with (small) modifications for the other cases in the same cluster. 
 
Table 2: list of science cases 

Proposer Science Case 

IAP-CAS 

Detection of plasma boundary crossings at planetary magnetospheres and 
solar wind 

Classification of plasma wave emissions in electromagnetic spectra  

INAF 
Mineral identification via reflectance spectra [possible applications foreseen 
in GMAP] 

DLR 
Classification of surface composition on the surface of Mercury  
[resulting data products can be used for GMAP] 

AOP Abundance of asteroids in Earth-like orbits from STEREO images 

GMAP Automatic recognition and analysis of planetary surface features 

IWF-OEAW Detection and classification of CMEs and CIRs in in-situ solar wind data 

LMSU 
Search for magnetopause/shockwave crossings on Mercury based on 
MESSENGER data 
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Figure 1. Clusters of science cases according to the corresponding data used 
 
The science case by AOP needed to be re-formulated, since it was not do-able the way it was 
proposed. More details about the new science case can be found later in the according 
section.  
 

Deliverables and Milestones 

There are nine deliverables and three milestones for our WP, listed in Table 3. 

Table 3: list of deliverables (D) and milestones (MS) 

Abbreviations Description 
Month 
due 

Finished 

D10.1 Annual Report 1 M12  

D10.2 Annual Report 2 M24  

D10.3 
Tutorial on Machine Learning and Basic How 
Tos (initial release) 

M31  

D10.4 
Demonstrator and Documentation of Data-
Processing Techniques 

M42 ✔︎ 

D10.5 
Demonstrator and Documentation of Time-
based Signal Analysis and Automatic 
Classification Tool 

M42 ✔︎ 

D10.6 
Demonstrator and Documentation of General 
Classification Toolset 

M42 ✔︎ 

D10.7 Annual Report 3 M36 ✔︎ 
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D10.8 
Tutorial on Machine Learning and Basic How 
Tos (final release) 

M42 ✔︎ 

D10.9 Annual Report 4 M48 ✔︎ 

MS11 Requirements for ML tools documented M4  

MS51 ML Demonstrators implemented and tested M30  

MS86 
ML Demonstrators fully validated and 
integrated 

M42  

 

b. Explanation of the work carried in WP 

Task 1 - Management and Coordination  

 
This task oversees the management of the ML JRA4, coordinates the activities within the WP 
and with the other WPs and reports to the PMC. 
 

Task 2 - Requirements for Machine Learning, Tool Validation and Communication 

Infrastructure 
All information about our tools and implemented scientific cases are available  on the ML 
Portal and our GitHub repository.It includes more information about the science cases, 
presentations, news regarding ML conferences, sessions and tutorials. 
 
We put the draft version of a Jupyter book on our GitHub repository (https://github.com/epn-
ml/europlanet-ml-book), which serves as a tutorial and reference book for the activity in our 
work package.  
 
Presentations and Workshops 
Fireball-tracking networks around the world are assisting in the recovery of fragments of fresh 
meteorites and understanding where in the solar system they originated. In collaboration with 
NA2, the ML WP organised the second and third workshops in this series of four, which were 
held on 4-5 February 2022 (virtual) and on 13-14 August 2022 (hybrid). These workshops bring 
together observers from different fireball networks, along with ML experts, to discuss how 
ML can support the fireballs community and to advise on handling the data collected.  
 
Four ML pipelines have been presented in three workshops during EPSC2022 - the pipeline for 
the IAP-CAS boundaries science case, the pipeline for the GMAP mounds science case, as well 
as two pipelines for the GMAP pits science case. All of the pipelines are available on GitHub.  
 
Presentations with results of the science cases are mentioned in the section about the 
individual science cases. 
 
Collaborations 
We continued our collaboration with two research projects at the IWF. 
 
Further, we continued our collaboration with the EU Horizon 2020 project EXPLORE and we 
are further investigating the possibility to integrate our ML pipelines into the EXPLORE 
platform. 
 

https://github.com/epn-ml/europlanet-ml-book
https://github.com/epn-ml/europlanet-ml-book
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Task 3 - Data Pre-Processing, ETL and Feature Engineering 

 
The aspects of data pre-processing and feature engineering are covered in the descriptions of 
the work for the individual science cases. Most science cases thereby utilize standard pre-
processing methods or work on the raw data through end-to-end learning. However, we also 
explore new routes to automate pre-processing. For example, the GMAP Mounds science case 
utilizes data augmentation in the form of generative adversarial networks to overcome data 
sparsity. Details on the pre-processing conducted can be found below. 
 

Task 4 - Time-based Signal Analysis and Automatic Classification 

 

Tools for Time-Dependent Phenomena 
 
The Sun emits not only heat and light, but a stream of electrically charged particles. This ‘solar 
wind’ interacts with objects in its path and can potentially strip away planetary atmospheres. 
Earth, and other planets with a global magnetic field, are largely shielded from the effects of 
the solar wind. However, solar activity can result in flares, emission of solar energetic 
particles and eruptions of material, called coronal mass ejections, that can interact 
with Earth’s magnetic environment and, in severe cases, cause serious disruption to power 
grids, radio networks and satellites. 
 
Europlanet 2024 RI has developed a suite of ML tools to support investigations of the solar 
wind and its effects on planetary environments over time. One tool supports forecasting the 
severity of a solar storm based on its magnetic orientation compared to the Earth’s magnetic 
field. A second tool monitors the conditions controlling emissions by high-energy particles 
trapped in radiation belts. A third tool automatically identifies points in data streams when an 
orbiting spacecraft crosses over the boundary between a planet’s protective magnetic field 
and the unshielded conditions of the solar wind. Collectively, this deployment of ML enhances 
our understanding of solar wind interactions and our ability to protect infrastructure both 
here on Earth and on the surface of, or in orbit around, other planets. 
 

IWF ICME Science Case (Automatic Detection and Classification of Boundary Crossings in 
Spacecraft in situ Data) 

 

Planetary magnetospheres create multiple sharp boundaries, such as the bow shock, where 
the solar wind plasma is decelerated and compressed, or the magnetopause, a transition 
between solar wind field and planetary field.  
 
Interplanetary coronal mass ejections (ICMEs) are one of the main drivers for space weather 
disturbances. In the past, different machine learning approaches have been used to 
automatically detect events in existing time series resulting from solar wind in situ data. 
However, classification, early detection and ultimately forecasting still remain challenging 
when faced with the large amount of data from different instruments. While CNNs are often 
used to discover objects or patterns in images or data series, there are two main problems 
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when facing our specific task: high duration variability and a rather ambiguous definition of 
start and end time. 
 
After the reimplementation of a model proposed by Nguyen et al. (2019) in year 1 of this WP, 
the model was tested on STEREO-A and STEREO-B data as well as on WIND data. All three 
contain less variables than the original data set used by Nguyen et al. At a similar recall as for 
the original set, the precision for all three datasets was only around 30% and the accuracy in 
delivering start and end times was limited. 
 
The next step was to align all three data sets in order to process more training data for a 
combined model. It was tested on held out datasets for WIND, STEREO-A and STEREO-B. 
Surprisingly, this did not sufficiently improve performance and lead us to explore other 
approaches. 
 
Starting from the reimplementation a post processing step based on YOLO v5 (ultralytics) was 
investigated, in order to improve performance. Even though first results seemed promising, 
the idea was later discarded due to unsatisfactory results and the laborious pipeline. Since the 
ultimate goal is an explicit and widely applicable pipeline, it was decided to abandon the 
general approach of using multiple basic neural networks and the similarity measure used by 
Nguyen et al. (2019) completely and compose it as a segmentation problem instead. 
 
 
  
We proposed a pipeline using a UNet (Ronneberger et al., 2015) including residual blocks, 
squeeze and excitation blocks, Atrous Spatial Pyramidal Pooling (ASPP) and attention blocks, 
similar to the ResUNet++ (Jha et al., 2019), for the automatic detection of ICMEs. Comparing 
it to last year's results, we find that our model outperforms the baseline regarding GPU usage, 
training time and robustness to missing features, thus making it more usable for other data 
sets, as well as the three aligned data sets. The confusion matrix is shown in Figure 2. 
 
The relatively fast training allows straightforward tuning of hyperparameters. Our proposed 
pipeline can be used for any time series segmentation problem. The straightforward 
implementation allows a simple extension to a multiclass classification problem and paves the 

Figure 2: Timeline for the science cases. Also shown are the deadlines 
for the WP deliverables and milestones. 



  

 

 12 

way to include corotating interaction regions into the range of detectable phenomena within 
our pipeline. Furthermore, we hope to apply our model to similar problems in the future. 
 
There have been several quite successful attempts to automatically segment in situ time 
series. Labelling the different regions such as the magnetosphere, the magnetosheath and the 
background solar wind, the segmented maps were subsequently used to detect boundary 
crossings and build an according database. From an exploratory point of view, we were 
interested in whether it would be possible to train a convolutional neural network on a 
catalogue of bow shock crossings to obtain these directly, without the need for a fully 
segmented time series. 
 
So far, we have developed a pipeline using only magnetic field and components, ion bulk-
velocity and components, ion density, parallel ion temperature and perpendicular ion 
temperature from the Cluster 1 spacecraft, resampled to a 1-minute frequency. To account 
for the huge data imbalance, parts of the data, where no bow shock crossings are expected 
(for example when the spacecraft is in the night side part of the magnetopause or too far away 
in the solar wind) were removed. Since the temporal expansion of a bow shock crossing is 
quite limited, the labelling of the data had to be conducted thoughtfully. The labels are one-
dimensional segmentation maps consisting of the values 0 or 1 for each point in time with a 
resolution of 10 min, indicating whether an ICME is taking place or not. We decided on a 
parameter between 0 and 1, which simultaneously defines if a given time 
frame contains a bow shock crossing and how far from the centre it occurs. 
 

 
 
The predicted label is clearly increasing for times when bow shock crossings occur. Thus, a 
peak detection algorithm can be used to extract a list of crossings. Even though Precision and 
Recall need to be improved, first results are promising and lead to the next steps: 
 
• train on more data from different spacecraft 
• use non-resampled datasets 
• include additional features 
• tune hyperparameters 
• further experiment with model architecture 
• cross-validation. 
 
Metrics for a random split of the data can be seen in the table below. 
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The ML pipeline is available  here on our GitHub repository. 
 
Results of this science case were presented at the EGU21, at EPSC2021, at ESWW 2021, and 
at AGU21 (see presentations on the ML Portal and on GitHub). A further presentation was 
given in May 2021 at an international working group called ‘CMEs, CIRs, HCS and large-scale 
structure’ (led by, among others, Christian Möstl and Silvia Perri). This ML pipeline was 
presented in a workshop at EPSC2021 and is, together with a tutorial, available on our GitHub 
repository.  
 
This science case was also presented at the EGU22 and the ESWW2022. Further, the results 
of this science case were published in the journal „Space Weather“: 
Rüdisser, H. T., Windisch, A., Amerstorfer, U. V., Möstl, C., Amerstorfer, T., Bailey, R. L., & 
Reiss, M. A. (2022). Automatic detection of interplanetary coronal mass ejections in solar 
wind in situ data. Space Weather, 20, e2022SW003149. 
https://doi.org/10.1029/2022SW003149 
 
References: 
1. Nguyen, G., et al. (2019), Automatic Detection of Interplanetary Coronal Mass Ejections 

from In Situ Data: A Deep Learning Approach, Astrophys. J. 874, 145, doi:10.3847/1538-
4357/ab0d24 

2. Jha, D., et al. (2019), Resunet++: An advanced architecture for medical image segmentation, 
arXiv e-prints, arXiv:1911.07067 

 
LMSU Boundaries Science Case 
The goal of this case is to improve our understanding of Mercury's magnetosphere and its 
dynamics. We utilise the data recorded by the MESSENGER (MErcury Surface, Space 
ENvironment, GEochemistry, and Ranging) spacecraft, which collected vast amounts of 
heterogeneous data during its approximately 4000 orbit voyage, most interestingly the 
magnetic field data from the magnetometer. A typical orbit involved passing from the 
interplanetary magnetic field through the bow shock, the magnetosheath, the magnetopause, 
the magnetosphere of Mercury, and thereupon the same sequence in reverse. Since a 
mercurial year is about 88 Earth days, several years' worth of magnetometer data was 
recorded. This is nice because several variations in environmental configurations are 
recorded, which is useful to build automatic models for event recognition. The resulting data 
set of crossing times and positions is to be used in conjunction with the paraboloid 
magnetosphere model to compute the magnetic field lines in the magnetosphere; these can 
subsequently be used to perform modelling of trajectories of particles sputtered from the 
surface of the planet by space radiation. 
 
Based on data from the mission, several global models of the magnetosphere were proposed 
(e.g., Winslow et al., 2013; Philpott et al., 2020). However, they could only describe an average 
shape of the bow shock and magnetopause crossings and can be prone to missing the 
statistical nuances in the data.  Given large data, Neural Networks can be expected to 

https://github.com/epn-ml/IWF-ICMEs
https://github.com/epn-ml/IWF-ICMEs
https://ml-portal.oeaw.ac.at/doku.php?id=conference_presentations
https://github.com/epn-ml
https://github.com/epn-ml
https://github.com/epn-ml
https://doi.org/10.1029/2022SW003149
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approximate complex functions, which often surpass deterministic and rule-based methods, 
in a variety of time series tasks like classification (Fawaz et al., 2019), time series forecasting 
(Lim and Bohren, 2021), and rare time series event detection (Nguyen et al., 2018). We 
leverage these to develop a predictor, that can be used in real-time during orbit, to predict 
magnetic region for each step in a short window of observation. Figure 3 illustrates the 
different crossing labels for an exemplary orbit.  
 
The use of statistical neural networks allows us to explore another aspect: with the help of 
active learning, it is possible to add samples to the training process incrementally. With this, 
we can examine how the model scales its predictive capacity with increasing data, and thus 
study how the variations such as changing solar wind and environmental conditions affects 
the manifestation of boundary signatures. To begin with, different orbits can be expected to 
have some element of similarity in the magnetic field structure, yet would have large 
variations in the same segments at different conditions. It is also interesting to study what the 
minimal amount is for the data needed to be able to generalize these phenomena for future 
missions such as BepiColombo. 
 
The data set was manually labelled with the boundary crossings. To identify bow shocks, we 
first subtracted planetary dipole magnetic field components from the magnetometer 
measurements, computed the magnitude of the remainder attributed to external sources, 
applied the Savitzky-Golay filter to smooth the time profile of the remainder and computed 
its second derivative. The first and the last second derivative spikes as determined by z-score 
are assumed to be the enter and exit bow shock crossings respectively. Magnetopause 
boundaries were eyeballed using the cartesian components of the magnetic fields in the 
Mercury Solar Orbital coordinate system. During magnetopause crossings at least one of the 
components in the magnetogram experiences a sharp growth; the exact component depends 
on the spacecraft position. The beginning and ending points of this growth region are assumed 
to determine the magnetopause crossing edges. To supplement these, we also used the 
boundaries marked by Philpott et al. (2020) for a few orbits. 
 
The distribution of the different magnetic regions, after annotation, is reported in Table 4. The 

boundaries of critical interest - bow shock and magnetopause - are minorities with only 3.7 
and 2.3 % representation. The table highlights the data imbalance issue that requires 
investigating special techniques to ensure the predictor does not bias towards the 
overrepresented classes. 
 

Figure 3: Exemplary labelled orbit from the work of Philpott et al. (2020). 
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As a first step in pre-processing, feature selection was performed to assess the contribution 
of available features in the estimation of the output. Based on statistical correlations, the 
magnetic flux features (BX_MSO, BY_MSO, BZ_MSO), spacecraft position coordinates 
(X_MSO, Y_MSO, Z_MSO) and planetary velocity components (VX, VY, VZ) were found to be 
most informative. In addition, three meta features, namely EXTREMA, COSALPHA and 
RHO_DIPOLE, were selected.  
 
In the feature preparation stage, a sliding window of variable sizes (3 seconds to 3 minutes) 
with a hop size of 1 second was computed on the time series signal to obtain feature vectors. 
Finally, the features were normalised to have mean of 0 and a standard deviation of 1. No 
other pre-processing or engineering was applied in order to allow the deep learning model to 
engineer features implicitly. 
 
The windowed features are fed first into a block of 3 Convolutional layers with 1D filters, each 
followed by Batch Normalisation and ReLu activations. The activations obtained at the end of 
the CNN block are then passed to the Recurrent block with two layers of LSTMs. The final 
activations are then passed to a fully connected layer with softmax activations. The objective 
function used for training is Categorial cross entropy, with Adam optimizer.  
 
The sample results in Figures 4 and 5 are from a model trained with two Mercury years of 
data, which is about 300 orbits.  

 

 

Figure 4: Left: Prediction; right: Ground truth.        
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The window size used in these experiments is 30 seconds. Overall, the predictor achieves a 
macro F1 score of about 80% on the Bow-shock and the magnetopause crossings on a 
randomly sampled test of 300 orbits. None of the orbits overlap in the train and test sets. 
 
Results of this science case were presented at the EGU21 as well as at the EPSC2021 (see 
presentations on the ML Portal and on GitHub). This ML pipeline was presented in a workshop 
at the EPSC2021 and is available on our GitHub repository.  

We developed an efficient method to detect automatically the bow-shock and magnetopause 
boundary crossings using data from the MESSENGER magnetometer. To this end, we first 
prepared the data suited to Machine Learning. Next, we experimented with several ML 
models, specifically neural networks to find a usable baseline. Next, we devised an Active 
Learning (AL) approach to select only the most informative orbits in the training set by using 
an uncertainty criterion. Using this strategy, we were able to find a generalisable model with 
only 10% of the available data. A framework with these models was published and made 
available, open-source, for the community to experiment with on similar tasks.  

We further extended this Active Learning approach by augmenting it with a Drift Detection 
strategy, such that the data sampler would first detect a distributional shift in the data, and 
then use the entropy-based criterion within the corresponding drift to order the most 
informative orbits. This further reduces the number of training orbits required, significantly 

Figure 5: Left: Prediction; right: Ground truth.        

Table 4. Class-wise distribution present in the data. 

Label Magnetic region Statistical distribution 

0 Interplanetary magnetic field 

(IMF)  
65.4 % 

1 Bow shock crossing (SK) 3.7 % 

2 Magnetosheath (MSh) 14.5 % 

3 Magnetopause crossing (MP) 2.3 % 

4 Magnetosphere (MSp) 14.1 % 

 

https://ml-portal.oeaw.ac.at/doku.php?id=conference_presentations
https://github.com/epn-ml
https://github.com/epn-ml
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outperforming random sampling. The results from this paper are in process of being 
assimilated into a paper to be submitted as an invited contribution in an AGU journal. 

Results from this work were published in EGU, EPSC, ML-Helio 2022, and ECML-PKDD 2022.   

The ML pipeline is available on our GitHub repository. 
 
This science case was presented at the ECML PKDD 2022 and published in the proceedings of 
this conference: 
Julka, S., Kirschstein, N., Granitzer, M., Lavrukhin, A. & Amerstorfer, U. V. (2022). Deep Active 
Learning for Detection of Mercury’s Bow Shock and Magnetopause Crossings. Proceedings of 
the European Conference on Machine Learning and Principles and Practice of Knowledge 
Discovery in Databases. 
https://2022.ecmlpkdd.org/wp-content/uploads/2022/09/sub_1177.pdf 
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IAP wave emissions science case 

This science case targets plasma wave identification from time-frequency spectrograms, 
specifically the electromagnetic whistler-mode "chorus" emission frequently observed in the 
inner magnetosphere of the Earth and other planets. The wave emissions typically occur as 
structured or unstructured features with visible boundaries in the time-frequency domain. 
We have created and delivered a training dataset of time-frequency spectrograms, 10 seconds 
each, generated from the data of the Wideband receiver on board four Cluster spacecraft. 
There are more than 4000 thousand events irregularly observed while spacecraft crossed the 
terrestrial magnetosphere and the nearby solar wind. We have visually checked the data and 
classified the intervals based on whether the chorus emission is present (82% of events) or 
not (18% of events). The value of local electron cyclotron frequency is included in the data for 
easier identification. The dataset is provided in the form of python data structures and can be 
used for both supervised and unsupervised machine learning. 

Planetary magnetospheres create multiple sharp boundaries, such as the bow shock, where 
the solar wind plasma is decelerated and compressed, or the magnetopause, a transition 
between solar wind field and planetary field. The boundaries are identified by a discontinuity 

https://github.com/epn-ml
https://2022.ecmlpkdd.org/wp-content/uploads/2022/09/sub_1177.pdf
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in magnetic field, plasma density, and in the spectrum of high-frequency waves. These 
measurements are available on many planetary missions, such as Cluster or THEMIS (Figure 
6). Due to the high amount of available data, a deep learning approach was found to be well-
suited to automatically identify said boundaries. So far, the data has been pre-processed and 
the process of model development has been started. Code to process the original spacecraft 
data is available on GitHub.  

 
 
Uni Passau received the data from the partners in Prague.  Uni Passau pre-processed the data 
and conducted the basic explorative analysis. Since the task is to segment the pixels with the 
whistler waves in the spectrograms, and only have image-level labels are available, as a first 
task in feasibility Uni Passau built a classifier that classifies the image sample into a binary 
category of interest. This classifier provides an accuracy of about 70 %. As the segmentation 
task itself needs to be unsupervised, ie. without labels, Uni Passau is investigating an approach 
that might learn a similarity metric from the data and disentangle the representation space 
into relevant and irrelevant parts. This will be the major focus of this year’s development. 
 

Figure 6: Example of a bow shock crossing. 
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This science case was presented at the EPSC2021 and the AGU21 (see presentations on the 
ML Portal). 
 

Task 5 - Images and Other (General) Classification Tools 

 
A. Identifying Hazards and Resources 

 
Every day, about 100 tonnes of rubble or dust from space enters the Earth’s atmosphere. Most 
of this burns up without being seen or reaching the ground. However, larger meteors can 
cause fireballs that streak across the sky and some fragments can reach the ground as 
meteorites. Increasingly, camera networks dedicated to fireball tracking are being installed 
around the world, both to facilitate meteorite recovery for research purposes and to increase 
our understanding of impacts to support planetary defence initiatives. Europlanet 2024 RI has 
been working with the professional and amateur meteoritic research community to develop 
ML-powered tools that extract information from imagery of fireballs to help determine their 
characteristics, trajectories and potential origins. 
 
Across the Solar System, images of planetary surfaces exhibit many common features, such as 
pits, mounds or craters. These features can reveal a wealth of information about the 
formation, history and potential useful resources of a planetary body. For example, ‘skylights’ 
or sinkholes on the Moon or Mars are of interest to geologists studying lava tubes and 
evidence of ancient volcanic activity; however, skylights are also potentially entrances to 
protected environments where underground habitats could be built for human explorers in 
the future. Craters can provide a detailed chronological record of the impact history of a 
planetary surface, potentially going back millions or billions of years, and may also trap water 
ice that could be used for life support and fuel. With a return of humans to the Moon planned 
within two-to-three years and international exploration strategies setting their sights on Mars, 
detailed and accurate mapping of surface features and resources at high resolution is 
essential. ML tools created by Europlanet 2024 RI and EXPLORE enable the automatic 
identification and labelling of mounts, pits, craters and other surface features. This not only 
enhances the speed of the mapping process but can also add in layers of information, such as 
the size, depth, composition and other characteristics of the features. 
 
ML-based tools have also been developed to automatically calculate the 
depth of pits by detecting their shadows and measuring the width as it appears in satellite 
image.  These will be primary targets for future space exploration and habitability since they 
are present on most rocky Solar System surfaces and, besides providing shelter from 
radiation, they have the potential to be entrances to sub-surface cavities which could, for 
instance in the case of Mars, harbour stable reservoirs of ice water. 
 
GMAP Mounds Science Case 
 
The GMAP Mounds identification science case aims to develop a generalised machine learning 
pipeline for the localisation and characterisation of specific geomorphological features 
(mounds) that are present on the surface of Mars. Mounds are positive relief features that 
can be ascribed to a variety of phenomena (e.g., De Toffoli et al., 2019). They can be related 
to monogenic edifices due to spring or mud volcanism, rootless cones on top of lava flows, 
pingos and so on. The focus of the investigation is related to the sedimentary/spring case of 
mud extrusion or sulphate oversaturated fluids. These objects usually are widespread 
regionally and/or contained in large complex craters (i.e., tens of km in diameter) often in 
populations of several hundreds/thousands. Previously, automatic detections were 
performed in some of these cases (Pozzobon et al., 2019) using topographic data in limited 

https://ml-portal.oeaw.ac.at/doku.php?id=conference_presentations
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areas (i.e., Digital Terrain Models (DTMs) as rasters whose cells represent height values) in 
order to discriminate these objects in terms of pre-trained morphometric parameters and 
map them. Due to the scarcity of high-resolution DTMs and poor area coverage, the ML WP 
challenge is to reach the ability to detect such mound features by using simple grayscale 
panchromatic images at mid-high resolution with no need of topographic information. 
 
The training set consists of two DTMs, one used for training and the other for testing. In the 
first step, the training DTM is tiled into several smaller fixed sized images. The label masks are 
created based on the available ground-truth shape files. The images are then scaled to be in 
range [-1,1]. The training set is then split further into train and validation sets with an 80/20 
ratio. The train set is augmented in the next step with image manipulations such as flipping, 
rotation, rescaling and so on to create a large training set for the segmentation task. 
 
For the initial image segmentation task, a standard UNet (Ronneberger et al., 2015) is trained 
using the training set. A mean IoU (Intersection over Union) of about 60 % on the validation 
set is obtained.  This result is consistent with another GAN based model, indicating a 
saturation in information present in the training set.  
 
Due to limited number of samples to train from, we learn a Generative model (Goodfellow et 
al., 2020) to approximate the true distribution of the landforms. We generate an augmented 
set using this approach and train the image segmentation again, observing an improvement 
of about 10% in the IoU. This is an interesting result, as it indicates that the model can be used 
to simulate the mound terrains. The approximated distribution space should be then 
factorizable into a set of independent mechanisms, which could control factors of variation.  
 
A simulator of such likes can be used for controlled generation. Another advantage of latent 
space learning is that it can offer benefits in downstream tasks, which is an added advantage 
for storage and efficient searching. We have developed this simulator, and we plan to 
disseminate the method as a publication in the coming months. 
 
Before the commencement of the previous year, we had already developed a basic 
segmentation pipeline using generative models (Image to Mask Autoencoders) to perform 
image segmentation and detect mound like features in the DTMs. As the data provided was 
severely limited, we initially attempted to generate simulated samples as an attempt to 
augment the training set. But that did not improve the segmentation. Finally, we augmented 
the training set with engineered features viz slope, aspect and hillshade and achieved a 
reasonable performance in the segmentation of mounds. Owing to a lack of proper validation 
set, it cannot be confirmed if the model will generalise well to unseen images. 
 
In a parallel line of experiments, we investigated the representation space learnt by the 
generative models, wherein we devised a method to disentangle the mound specific 
representation from the non-mound representation, in order to perform controlled 
simulation. This would be useful to improve searchability in compressed representations, but 
it is yet to be determined if this approach can help directly in the main goal of segmentation. 
 
Results from this work were presented in EPSC, EGU 2021, and the segmentation pipeline was 
demonstrated in a workshop in EPSC 2022. 
 
The ML pipeline is available on our GitHub repository. The ML pipeline was presented during 
a workshop at the EPSC2022. 
 
 
 

https://github.com/epn-ml
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GMAP Pits Science Case 
 
To improve the results obtained by the first tool for automated mapping of pits 
(DeepLandforms-YOLOv5, https://github.com/epn-ml/DeepLandforms-YOLOv5), a change of 
architecture was necessary. The results obtained by that tool, despite their goodness, need 
further processing since they are not immediately usable for proper mapping as they are 
composed only by a pair of coordinates that localize the centre of the detected features. Such 
detections still need to be properly mapped as polygonal shapes by users. Since this is a highly 
time-consuming and tedious task, it led to the development of a new tool, based on Deep 
Learning Instance Segmentation, to retrieve not only point coordinates of the detected 
features, but also a polygonal shape. The obtained results were then compared to the results 
obtained with the previous tool and with the MGC^3 database (Cushing et al. 2012, 2015) 
showing good results. A publication and this new tool will be released soon.  
 
The next developing steps for DeepLandforms tool have been considered, for instance, we 
want to generalize it further by providing further baseline configuration. For instance, a 
configuration for PyTorch and another for Tensorflow python packages. 
We are preparing a newer dataset to be tested with the updated tool. 
 
Results of this science case were presented at the LPSC2021 and EGU21.  
 
DeepLandforms has been presented with a live demo in a splinter-session at the Europlanet 
Science Congress 2022, held in Granada. 
The paper presenting DeepLandforms, has been accepted in December 2022, and is available 
on https://doi.org/10.1029/2022EA002278. 
The code is completely available on EPN-ML GitHub. 
Constructor University (formerly Jacobs University) press release: https://www.jacobs-
university.de/news/researchers-develop-ai-method-mapping-planets  
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B. Tools for chemical characterisation 
 
Many planetary missions carry spectrometers to gather information on the mineralogy of 
planetary surfaces. Remote sensing data suggest igneous rock-forming silicates on the 
surfaces of various bodies of our Solar System. This can help reveal the formation of rocky 
planets such as Mars and natural satellites such as the Moon. Minerals reflect certain parts of 
the electromagnetic spectrum more strongly than others depending on their chemical 
composition. To support these spectral studies, a Europlanet 2024 RI ML algorithm has been 
trained with reflectance spectra generated in laboratory experiments at the visible and 
infrared wavelengths that are key to unlocking surface composition. An additional bespoke 
tool has been trained for unsupervised classification of infrared observations by NASA’s 
MESSENGER spacecraft, which orbited Mercury between 2011 and 2015. With ESA’s 
BepiColombo mission set to arrive at the Solar System’s innermost planet in December 2025, 
this tool is helping BepiColombo’s spectrometer team to perform vital groundwork in 
identifying areas of particular interest and developing workflows for future data analysis. 

 
DLR Surface Composition Science Case 
 
In this science case, Mercury surface reflectance data from the MASCS instrument onboard 
the NASA/MESSENGER mission is analysed. First, NASA/PDS data is converted into a relational 
DB (PostgreSQL). Then the data is regridded with custom Postgis/PostgreSQL spatial queries. 
This produces a global hyperspectral data cube image of normalized MASCS visible (VIS) 
detector spectra, from the first Earth year of the orbital mission. The cube contains some 
anomalies, in regions of low coverage or from high levels of spectral variation within a single 
pixel. Thus, data artifacts, instrumental and photometric residual effects are all removed. The 
resulting data cube has several hundred features that are compressed via blind signal 
demixing with Independent Component Analysis (ICA). Initial results show that four 
components reconstruct the original dataset within the measurement estimated error. The 
four features were embedded in a two-dimensional space via Uniform Manifold 
Approximation and Projection (UMAP). No significant small-scale morphology was found after 
exploring UMAP hyperparameters. Finally, the 2D maps were partitioned with hierarchical 
agglomerative clustering. Dendrogram gap analysis shows a big gap between data partition in 
three and four clusters, and three clusters have been chosen as sig`nificant data segregation. 
At this initial stage, the existence of two large and spectrally distinct regions has been found, 
which have been designated the polar spectral unit and the equatorial spectral unit (see Figure 
7). 
The spatial extent of the polar unit in the northern hemisphere generally correlates well with 
that of the northern volcanic plains and partially to the surface highest temperature models 
in the equatorial region. This may indicate an interaction between mineral composition and 
structure and surface temperature, because Mercury reaches a diurnal temperature above 
700 K. Chemical data spatial distribution from X-ray and Gamma ray spectrometers show no 
apparent correlation with the clusters. This could indicate that chemical composition 
produces no distinctive mineral phases for the instrument or that those phases were altered 
enough to be indistinguishable by the harsh space environment around Mercury. Further 
analysis indicates the presence of smaller sub-units that lie near the boundaries of these large 
regions and may be transitional areas of intermediate spectral characters. 
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First results of the science case were presented at EGU21 (see presentations on our ML 
Portal). 
 
During the last year, DLR organized the code repository to be self-sufficient from data source 
to end result. The DLR ML team produced a complete report (PDF/HTML) present in the 
repository and published with Elsevier. The aim is to make the user able to reproduce the 
complete work just using the information contained in the repository. A video tutorial on DLR 
use case for GMAP Winter School has been released. The presentation is in the DLR repository 
as well, the video is available on GMAP server (https://www.planetarymapping.eu/). 
 
INAF spectral analysis for planetary minerals case  

(https://github.com/epn-ml/spectral-analysis-planetary-minerals) 

We analyzed the best spectra data to provide to the project and implemented a procedure to 
format the data in a standard way using JSON format for data storage and transport; in this 

way the communication of the methods of reading and managing the dataset will be simple, 
the metadata necessary for their understanding will also be stored in the dataset. In Fig. 8 the 
summary of the samples obtained by learning and test subsets are shown (from 683 samples 
in total, 152 samples are labelled indicating the element abundances). We test some ML 

Figure 7: Agglomerative Clustering 3 classes. 

https://ml-portal.oeaw.ac.at/doku.php?id=conference_presentations
https://ml-portal.oeaw.ac.at/doku.php?id=conference_presentations
https://www.planetarymapping.eu/
https://github.com/epn-ml/spectral-analysis-planetary-minerals
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algorithms on the selected dataset, to test if the dataset can be used for an ML analysis.

 
Figure 8. The number of samples which do not have consecutive wavelengths (and 
its reflectance). For more details see README.md 
 

 
Figure 9: The Pipeline chart flow.  
 
This is a multi-output classification or multi-output regression problem where the input is the 
obtained reflectance, and the output is a composition of different mineral phase names. 

• In regression task, the output is a list of real numbers ranging from 0 to 100 whose 
sum must be 100. 

• In classification task, the output is a list of binary values (0 or 1) which indicates that 
phase name exists (1) or not (0). 

 
AOP Asteroid/meteor Science Case 
 
The goal of this science case is to search for asteroids thought to exist along the Earth's orbit 
that may be leftover material from the formation of our planet. These asteroids always appear 
close to - or even behind - the Sun in the sky and are therefore difficult to detect from Earth. 
Images taken from the two STEREO probes which have been studying the Sun and its vicinity 
since 2009 will be used as the basis for the science case. The spacecraft have been slowly 
drifting along the Earth's orbit and are able to image the sky from different vantage points 
around the Sun. This enables the abundance of asteroids in Earth-like orbits to be constrained, 
including any large (hundred-metre to kilometre size) objects in unstable paths that are not 
picked up by surveys and present a long-term impact hazard to our planet. 
 
During this reporting period, it was determined that Machine Learning would not be of benefit 
to the science cases originally proposed by AOP. Following some conferring within WP10, a 
re-defined science case was formulated aimed at the classification of meteor lightcurves. AC 
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is presently in collaboration with Andreas Windisch (FH JOANNEUM) to take this forward to 
implementation. Work by AC in the last few months of 2022 focused on extracting the 
lightcurves from the raw data and already several thousand lightcurves have been made 
available to Dr Windisch and his group for pre-processing. 
 

Task 6 - Virtual Access and Interfaces 

 
The Machine Learning Portal provides the public point of entry to our ML activities. We 
continuously update the content on the portal. We also improved the ML Portal structure 
according to comments of the VA review board. A first draft of how JRA4 services can be 
onboarded into the EOSC has been provided in year 1 of the WP, including a description of 
the EOSC, EOSC portal and hub, and the European Grid Infrastructure (EGI). Onboarding a 
service into EOSC means that the service is listed in the portal of the EOSC site (like a shop 
window) but is hosted by the service provider. The EOSC expects mature services (TRL8/9) to 
be onboarded. Further possibilities to onboard ML demonstrator services on the EOSC are 
being explored. A preliminary list of requirements for onboarding has been identified. 
 
Since 2022, we have been working on finalising and disseminating the APP (Analysing 
Planetary Pits) tool. APP is a Python framework for automatically deriving apparent depth 
profiles of Solar System pits by measuring the width of their shadows. It uses image 
segmentation to separate cropped satellite images (single- or multi-band) into shadow pixels 
or non-shadow background and calculates a profile of the apparent depth (h) of a pit – the 
depth at the edge of the shadow – along the entire length of the shadow. The testing of the 
shadow extraction is complete, proving that k-means clustering with silhouette analysis was 
the most accurate method. APP has been presented at a number of conferences and forums 
over the past year (EAS Annual Meeting, RAS National Astronomy Meeting, Congress on 
Geomorphology), including hands-on sessions at the Europlanet Science Congress in Granada 
where participants got to use APP in practice for the first time. A paper has been written 
describing APP which has now been submitted to the journal - Royal Astronomical Society’s 
Techniques and Instruments (RASTI). The short-term plan is to make the tool publicly available 
in the ACRI-ST GitLab, the Europlanet 2024 RI GitHub and the EXPLORE platform. 
 
The EXPLORE platform (https://explore-platform.eu) is a development platform whose main 
purpose is to validate, test and demonstrate the scientific data applications (SDAs) being 
delivered by the EXPLORE project. These SDAs will subsequently be deployed also on other 
platforms – when these are ready – such as ESA Datalabs and ESCAPE SAP. This portability is 
key to bringing the SDAs close to the data. 
  
A joint effort between Europlanet RI 2024 and EXPLORE is now ongoing to update the 
EXPLORE platform to allow the deployment of JupyterLab-type applications (a technical 
update is necessary to run JupyterLab based docker images) which will be used to deploy the 
Jupyter notebooks. The LMSU boundaries ML pipeline was the first implemented in EXPLORE. 
  
The following restriction are to be noted: 

1. Only registered users can run SDAs on the platform, this is needed for resource 
management and also to attach the user’s workspace to the running SDA. In this early 
phase of EXPLORE, the registration is upon invitation/request. In the longer-term self-
registration may be added. 

2. The EXPLORE platform is (currently) a development platform, which means that it has 
limited computing resources in the back end. In the longer term, it is foreseen to add 
elasticity to the infrastructure resources and evolve it into an operational service. 

The deployment of tools in the ESA Datalabs is also being investigated. 

https://ml-portal.oeaw.ac.at/
https://explore-platform.eu/
https://datalabs.esa.int/
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c.      Impact to date 

In July 2023, the development phase of Europlanet 2024 RI’s ML tools is largely complete, and 
training and dissemination are underway to support their adoption by the community. The 
synergistic collaboration between Europlanet 2024 RI and EXPLORE has also demonstrated 
the EXPLORE platform’s usefulness to the planetary community in providing a test 
environment to deploy ML tools and other applications. The platform fills a previously 
unidentified gap in supporting the development of applications to the point of maturity 
needed for deployment on major data hubs, such as the European Science Open Cloud (EOSC) 
and ESA Datalabs.   
 
Much of the development work for the ML tools has been performed by early career 
researchers, enabling them to build both their skills and experience and their professional 
profile within the scientific community. 
 
The Europlanet 2024 RI ML tools were designed to be applicable for a large number of 
applications dealing with scientific databases. The structure of the ML repositories includes 
not only the description of the scientific cases with the corresponding ML technique but also 
the results that one can obtain by applying given technique. Therefore, the outcomes of the 
ML training can be compared and can be applied autonomously by the user in the spirit of 
independent standalone best practice to learn how to analyse a scientific problem. 
Repositories with documentation, numerical scripts and scientific graphs are available.       
Overall, by developing ML tools tailored to planetary science, Europlanet 2024 RI has 

cemented collaborations, started to build new user communities and developed services that 

are already resulting in publications. While the planetary science community could be seen as 

late to the party in adopting ML, interest now is high. This couldn’t be more timely – with 

flagship missions to Mercury and Jupiter soon adding to the deluge of data streams, the era 

of data-driven science is only just beginning. 

 
In summary, at different occasions, e.g. conferences, we have presented results of our science 
cases as well as our ML activities in Europlanet 2024 RI. We have published a number of 
publications with ML contributions reporting our ML results of the scientific cases.  
 
We have organized and convened four conference sessions specifically dedicated to ML in 
planetary sciences and heliophysics (and we will organize such sessions again in 2023) and we 
organized an ERIM session in June 2023. 
 
Five workshops were conducted in the course of EPSC2021 and EPSC2022 to introduce our 
ML pipelines to the scientific community. All ML pipelines are available on our public GitHub 
repository.  The session „Machine Learning in Planetary Sciences and Heliophysics“ at the EGU 
2023 had 24 abstracts submitted. 
 
An article describing the achievements of ML WP has been released on INNOVATION 
NEWSNETWORK portal(https://www.innovationnewsnetwork.com/machine-learning-for-a-
new-era-of-data-driven-planetary-science/35810/).  
 

d.    Summary of plans for Year 4 

Currently, we are working on feasible integration of first data sets of our science cases into 
VESPA. Further, we have integrated most of our ML pipelines into SPIDER and the EXPLORE 
platform.  
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Finally, we will finalize our work on the remaining science cases and publish the final version 
of our Jupyter book, containing documentation and tutorials about our work.  

2. Update of data management plan 

The data management plan will be updated in order to incorporate the comments raised by 
the VA review board.  
 

3. Follow-up of recommendations & comments from previous review(s) 

We have answered the issues raised in the VA review board report in a collected answer of all 
VAs.  




