20-EPN-015: Deciphering fluidization of mass flows by metastable volatiles on extra-terrestrial bodies
October 7, 2022

20-EPN-015: Deciphering fluidization of mass flows by metastable volatiles on extra-terrestrial bodies

Project lead: Tjalling de Haas. Visit by Lonneke Roelofs, Utrecht University, the Netherlands to TA2.20 Open University Mars Chamber (UK).
Dates of visit: 20 September – 29 October 2021

Report Summary: Martian gullies are alcove-channel-fan systems that have been hypothesized to be formed by the action of liquid water and brines, the effects of sublimating CO2 ice, or a combination of these processes. Recent activity and new flow deposits in these systems have shifted the leading hypothesis from water-based flows to CO2-driven flows, as it is hard to reconcile present activity with the low availability of atmospheric water under present Martian conditions. Direct observations of flows driven by metastable CO2 on the surface of Mars are however nonexistent, and our knowledge of CO2-driven flows under Martian conditions remains limited. For the first time, CO2-driven granular flows were produced in a small-scale flume under Martian atmospheric conditions in the Mars Chamber at the Open University (UK). The experiments were used to quantify the slope threshold and CO2 fraction limits for fluidization. With these experiments, we show that the sublimation of CO2 can fluidize sediment and sustain granular flows under Martian atmospheric conditions. The morphology of the deposits is lobate and depends highly on the CO2-sediment ratio, sediment grain size, and flume angle. The gas-driven granular flows are sustained under low (<20o) flume angles and small volumes of CO2 (around 5% of the entire flow). Pilot experiments with sediment flowing over a layer of CO2 suggest that even smaller percentages of CO2 ice are needed for fluidization. The data further shows that the flow dynamics are complex with surging behavior and complex pressure distribution in the flow, through time and space.

Article in the Europlanet Magazine on visit by Lonneke Roelofs.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

Новости Новости Беларусь Любовь и семья Общество Люди и события Красота и здоровье Дети Диета Кулинария Полезные советы Шоу-бизнес Огород Гороскопы Авто Интерьер Домашние животные Технологии Идеи для творчества на каждый день