20-EPN-039: Deep carbon- and water-rich (C-O-H) fluids record associated geodynamic processes and impacts on planetary continental lithospheres through time
Visit by Yaakov Weiss, Hebrew University of Jerusalem (Israel) to TA2.1 VU Geology and Geochemistry radiogenic and non-traditional stable Isotope Facility (GGIF).
Dates of visits: 07-12 December 2021 and 21 August – 4 September 2022
Report Summary: ‘Fibrous’ diamonds, a fast-growing form of diamonds that often encapsulate carbon- and water-rich (C-O-H) fluid microinclusions, are a primary target for studies of C-O-H mantle fluids and how these fluids influence deep mantle processes. However, only a small amount of diamond (normally <1 mg) and even smaller amounts of C-O-H fluid microinclusions can be sampled and analyzed using conventional laser ablation approaches and mass spectrometry measurements. In the present project, we implemented a novel diamond-in-liquid laser ablation technique that was developed to overcome the sample size limitation, combined with ultra-low blank column chromatography and 1013 Ohm resistor TIMS analyses, to provide the first high-precision Sr-Nd-Pb isotopic compositions of C-O-H mantle fluids in diamonds from the Kaapvaal Craton in southern Africa. We successfully processed and analyzed 12 samples from De Beers Pool, 5 from Finsch and 6 from Koffiefontein mines, as well as standards and blanks. We finished processing the collected data which show exciting Sr-Nd-Pb relationships that vary between diamonds carrying different C-O-H fluids and micro-mineral inclusions. We still need to complete some data processing and calculations, as well as correlate the isotopic ratios with trace element compositions to fully understand the results and their geological significance. Nonetheless, we are certain that the outcome of this Europlanet project will have a major impact on our understanding of the origin and evolution of C-O-H mantle fluids, the transport of mobile components between different mantle (and crustal) reservoirs, and the role of deep C-O-H fluids in the global circulation of volatiles through Earths’ history.
Read the full scientific report, with kind permission from Yaakov Weiss.