20-EPN2-106: The effect of ice substrate to formation of mud flows in a low-pressure environment: insights for Martian sedimentary volcanism
Visit by Ondrej Kryza, Institute of Geophysics of the Czech Academy of Sciences (Czech Republic) to TA2.20 Open University Mars Chamber (UK).
Dates of visit: 21 June – 12 July 2022
Report Summary: This project was designed to extend previous research of mud behaviour in the low-pressure conditions – with implications for potential sedimentary volcanism on Mars. The main objective was to test the effect of ice (or combined ice-sand) substrate to flow abilities and finite morphology of mudflows. As secondary objectives, testing of various inclinations of the surface, investigation of potential thermal erosion and extended study of another type of surfaces were implemented.
In the first part of the project, nine successful experiments, with pure and variously inclined (2-10°) ice surface, confirmed a different style of mud propagation than in case of the frozen sandy surface. The major observations are: 1) dominant and prevailing boiling of mud mixture during the propagation over deeply frozen ice surface (confirms significance of latent heat related to melting/recrystallization), 2) explosive potential of ice when in contact with the boiling mud (fracturing, contraction-dilatation). The effect of slope in tested range has no significant impact on these observations.
The second type of experiments tested combined ice-sand upper lid. Here, transition between boiling and freezing of mudflows was faster and finite morphology was more similar to lava-like flows which were described by Brož et al. (2020a).
In both cases, the thermal erosion was not confirmed. Moreover, during sectioning and investigation of the finite mudflow shapes and their base, the developed bumps, irregularities or even increased porosity of ice lid were discovered. This might refer to more complex thermal exchange between ice and mud with a sequential melting and re-freezing.