22-EPN3-065: Ion Bombardment of Glycine and Glycine Embedded Within Water Ice in Solar System and Interstellar Conditions
Visit by María Belén Maté and Ramón Javier Peláez (IEM-CSIC, Spain) to TA2.12 Atomki-Queen’s University Ice Laboratory for Astrochemistry (Hungary).
Dates of visit: 07-11 November 2023
Report Summary: The possibility that prebiotic precursors of life formed in the space and were then transported to the early Earth by comets, asteroids and meteorites is a fascinating hypothesis. We focus in this project on hydroxylamine, NH2OH, a key N-bearing species that has been proposed as an important precursor in the formation of amino acids like glycine or alanine. Very recently, hydroxylamine has been detected in the gas phase in dense clouds in the interstellar medium. It has been predicted to form efficiently on dust grains according to laboratory experiments and chemical models. Then, the presence of this species in ISM ices and on the surface of Solar System bodies is probable, and in those surfaces can react to form more complex prebiotic species like amino acids.
Although the chemical pathways leading to the formation of NH2OH in astrophysical ices have been thoroughly studied, the next step in the chemical evolution that would begin with NH2OH as a precursor in ice has, to our knowledge, not been addressed experimentally.
In this TA project the team studied the chemistry induced by Cosmic Rays on ices containing hydroxylamine. They studied pure NH2OH ices and mixtures with H2O, CO and D2O, at 20 K, irradiated with 15 keV H+ ions. In particular, we were interested in finding complex organic molecules in the processed ices, and learning how different ice composition affects the chemistry and the destruction efficiency of NH2OH by Cosmic Rays.