Candy-pink lagoon serves up salt-rich diet for potential life on Mars
The discovery of a microorganism that gives a candy-pink lagoon in central Spain its startling colour is providing new evidence for how life could survive on a high-salt diet on Mars or Europa. The Laguna de Peña Hueca, part of the Lake Tirez system in La Mancha, has very high concentrations of salt and sulphur and is a good analogue for chloride deposits found in the Southern highlands of Mars and briny water beneath Europa’s icy crust. The results of a study of microorganisms found in the lake will be presented at the European Planetary Science Congress (EPSC) 2018 in Berlin by Dr Felipe Gómez.
Dr Rebecca Thombre and Dr Gómez collected samples of lagoon water and studied the physical characteristics and genetic sequence of the isolated microorganisms. They found that the lagoon’s pink colour derives from the red cells of a sub-genus of the salt-loving algae Dunaliella. This extremophilic algal strain from Laguna de Peña Hueca has been named Dunaliella salina EP-1 after the Europlanet 2020 Research Infrastructure, which funded the study through its transnational access programme.
“Dunaliella salina EP-1 is one of the most salt-tolerant extremophiles that we’ve found,” said Dr Thombre, of the Department of Biotechnology, at the Modern College of Arts, Science and Commerce in Shivajinagar, Pune, India. “Microbes find it difficult to tolerate hypersaline environments because water needed for the cell to function tends to flow out through the cell-membrane into the salty surroundings. The algae survive the conditions at Peña Hueca by producing molecules like glycerol that mimic the external salt concentrations within the cell and counteract water-loss.”
The cells of Dunaliella algae are used in many countries for the industrial production of carotenoids, ß-carotene, glycerol, bioactives, biofuel and antioxidants, so the strain EP-1 may have applications for a range of biotechnologies.
“Considering the commercial and economic significance of this organism, future studies are warranted to gain a complete picture of its physiology, ecology and biotechnological potential,” said Dr Thombre.
The team also identified the halophilic bacteria, Halomonas gomseomensis PLR-1, in a pink rock submerged in the sulphate-rich brine of Peña Hueca. The study of this microorganism may provide vital clues in understanding the role of sulphates in microbial growth and lithopanspermia, the theory that organisms can be transferred in rocks from one planet to another.
“The resilience of extremophiles to the conditions of Mars analogues on Earth demonstrate their potential to thrive in martian soils,” said Dr Gómez of the Centro de Astrobiología, Madrid, Spain. “This has implications for planetary protection, as well as how algae might be used to terraform Mars.”
Images
The candy-pink Laguna de Peña Hueca derives its colour from the red cells of the salt-loving algae Dunaliella salina EP-1. Credit: Europlanet/F Gómez/R Thombre
The water in the candy-pink Laguna de Peña Hueca derives its colour from the red cells of the salt-loving algae Dunaliella salina EP-1. Credit: Europlanet/F Gómez/R Thombre
The water in the candy-pink Laguna de Peña Hueca derives its colour from the red cells of the salt-loving algae Dunaliella salina EP-1. Credit: Europlanet/F Gómez/R Thombre
Red samples of the salt-loving algae Dunaliella salina EP-1 in a salt crystal. Credit: Europlanet/F Gómez/R Thombre
This extremophilic algal strain from Laguna de Peña Hueca has been named Dunaliella salina EP-1 after the Europlanet 2020 Research Infrastructure. Credit: Europlanet/F Gomez/R Thombre
Science Contacts
Dr Rebecca S Thombre
Modern College,Shivajinagar, Pune-5, India
rebecca.thombre@gmail.com
Dr Felipe Gómez Gómez
Centro de Astrobiología (INTA-CSIC)
Madrid, Spain
gomezgf@cab.inta-csic.es
Media Contacts
Anita Heward
Europlanet/EPSC 2018 Communications Officer
anita.heward@europlanet-eu.org
Livia Giacomini
Europlanet/EPSC 2018 Communications Officer
livia.giacomini@europlanet-eu.org
Notes for Editors
EPSC 2018
The European Planetary Science Congress (EPSC) 2018 (www.epsc2018.eu) is taking place at the Technische Universität (TU) Berlin, from Sunday 16 to Friday 21 September 2018. EPSC is the major European annual meeting on planetary science. Around 1000 scientists from Europe and around the world will attend EPSC 2018 and will give around 1,250 oral and poster presentations about the latest results on our own Solar System and planets orbiting other stars.
Details of the Congress and a full schedule of EPSC 2018 scientific sessions and events can be found at the official website: http://www.epsc2018.eu/
About Europlanet
Europlanet provides Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. Europlanet is the parent organisation of the European Planetary Science Congress (EPSC).
The Europlanet 2020 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 654208 to provide access to state-of-the-art research facilities across the European Research Area and a mechanism to coordinate Europe’s planetary science community. The project builds on a €2 million Framework 6 Coordination Action and €6 million Framework 7 Research Infrastructure funded by the European Commission.
Europlanet Society website: http://www.europlanet-society.org/
Europlanet project website: http://www.europlanet-2020-ri.eu
Follow on Twitter via @europlanetmedia