The Future of Sample Return

The Future of Sample Return

With Insider Dr Enrica Bonato

By Peter McArdle, Hans Huybrighs, Prasanna Deshapriya, Ottaviano Ruesch, and the EPEC future research working group.

The field of sample return is developing rapidly around an increasing number of missions. What facilities and techniques are needed to handle such samples? Will sample return dominate other fields of planetary science? We discussed these questions and more with Dr. Enrica Bonato, who developed the Sample Return Lab at DLR and worked with samples from Hayabusa2 and legacy samples from Luna 24.

Acceptance tests of the Electron Microprope Analyser (EPMA) at JEOL GmbH in Freising (Germany). The acceptance was attended by Dr. Enrica Bonato and Dr. Jörn Helbert (Head of the Planetary Laboratories at the DLR Institute for Planetary Research in Berlin-Adlershof). The instrument will be moved to the SAL laboratory facilities as soon as the setup of the clean room will be completed.
Sample of lunar regolith retrieved by the Soviet mission Luna24 in 1976 and donated to the Institute for Cosmos Research, which was part of the Academy of Sciences of the German Democratic Republic (GDR) during the GDR which after 1990 it became the DLR Institute for Planetary Research in Berlin-Adlershof. Credit: DLR.

Can you tell us about your academic background?

I earned my PhD in planetary science, undertaking my research jointly at the Natural History Museum (NHM) in London and the University of Glasgow. My project focused on the thermal metamorphism of carbonaceous chondrites. Following this, I took on a short postdoctoral position at the NHM, where I worked on lithium mining. I am passionate about public engagement, and I explored various outlets for this during my time at the NHM.

After completing my postdoc, I transitioned into the role of lab developer and manager for the newly established DLR sample return lab. When I started this role, there was no lab to speak of! I played a crucial role in planning and outfitting the lab in addition to getting it ready for its intended use as a sample return facility and curation center. As part of my responsibilities at DLR, I am proud to be a member of the Hayabusa 2 and MMX analysis teams.

What advice would you give to early career researchers who would be interested in a similar role to yours?

The key to securing my role as a lab developer manager was ‘delving behind the scenes’ of various instruments during my postdoc. This allowed me to become an independent user of these instruments, by becoming involved in everything from sample preparation, instrument set up and operation to data analysis. Attending numerous training events organised by instrument and software suppliers also proved invaluable experience.

For those intrigued by the prospect of joining sample return missions, I believe being in the right place at the right time is crucial. However, I suggest that early-career researchers (ECRs) with an interest in these missions reach out to existing team members. By doing so, they can explore opportunities to support the mission in various ways.

“I suggest that early-career researchers with an interest in these missions reach out to existing team members.”

Enrica Bonato

How do you see the future of sample return?

We are currently in a golden age for sample return. Multiple missions have successfully returned samples from asteroids (Hayabusa, Hayabusa2, OSIRIS-REx) and the moon (Chang’e 5) in recent years. At the same time new missions are in preparation to return samples from Mars and its moon Phobos (MMX, Mars Sample Return).

I believe that it won’t stop here. In the coming decades, we will witness sample return missions expanding to an increasing number of objects. I am particularly excited about the prospect of sample return missions from Ceres and comets. As part of the sample return mission process, we are also dedicated to enhancing the handling and analysis of samples already on Earth. The collection, transportation, and storage of samples from other planets demand a detailed understanding of material properties, necessitating a new specialisation within the field of planetary science.

“We are currently in a golden age for sample return.” 

Enrica Bonato

We can analyse samples much better in a lab on Earth than by using limited instruments on space missions. Will there be a shift towards sample return missions at the cost of traditional space missions?

Enrica Bonato carrying out acceptance tests of the Electron Microprope Analyser (EPMA) at JEOL GmbH in Freising (Germany).
Enrica Bonato carrying out acceptance tests of the Electron Microprope Analyser (EPMA) at JEOL GmbH in Freising (Germany). Credit: DLR..

“Sample return missions will complement other planetary science missions.”

Enrica Bonato

I believe that sample return missions will complement other planetary science missions. It’s crucial to bring a diverse array of instruments to the objects we’re interested in. On one hand, we need to assess and identify sites that are intriguing and suitable for sample return. On the other hand, we also need to conduct broader investigations of the objects to provide context for the analysis of the samples.

What are the main challenges for sample return in the coming decades?

Challenges will come from the new sample environments that we will access and new types of materials that we will sample, for example a potential future sample return mission from Venus’ surface. Building a spacecraft that can land on Venus’ extremely hostile surface and return a sample is extremely challenging. Challenges will also arise from returning a new type of sample: ice. So far the samples returned are rocks. Sampling ices from Ceres, comets or icy moons and keeping them frozen throughout cruise, the landing and later in storage on Earth brings unique challenges. Some of these technologies already exist in other fields, but a lot of new development is needed.

How did you plan the outfitting of the new sample return lab for DLR?

Dr Enrica Bonato and Dr Jörn Helbert (Head of the Planetary Laboratories at the DLR Institute for Planetary Research in Berlin-Adlershof) attending acceptance tests of the Electron Microprope Analyser (EPMA) at JEOL GmbH in Freising (Germany). The instrument will be moved to the SAL laboratory facilities as soon as the setup of the clean room is completed. Credit: DLR

I was the only person working on this project, alongside the grant holder, who also served as my supervisor. Before my involvement, there were already some initial planning and key milestones in place. My goal was to implement and adapt this plan throughout my time at DLR. I focused on specific techniques, aiming to establish a unique and specialised niche for the lab. Considering both the institute’s requirements and the broader scientific community, I selected instruments and managed their procurement. The next step in the project would be to upgrade the lab to a curation facility.

What are the key features of a dedicated sample return lab? And how might these differ from an equivalent Earth science lab?

The features are quite similar to an Earth science lab. Analyses often take place in labs at universities or research institutes, not necessarily tailored for a particular incoming sample. One notable distinction is the need for personnel to wear lab clothing and adhere to specific standards in sample handling so as not to contaminate samples.

Does the sample return lab at DLR possess any distinctive instruments or employ unique techniques for the analysis of samples that are not currently accessible to the broader community elsewhere?

The sample holders for XRD (X-Ray Diffraction) analysis allow for preparation within a glove box and subsequent analysis of the samples without exposure to air. Additionally, another unique feature is a sample transport shuttle that facilitates vacuum conditions between the Electron Microprobe and SEM (Scanning Electron Microscope), ensuring a controlled environment for the sample.

Acceptance tests of the Electron Microprope Analyser (EPMA) at JEOL GmbH in Freising (Germany). The acceptance was attended by Dr. Enrica Bonato and Dr. Jörn Helbert (Head of the Planetary Laboratories at the DLR Institute for Planetary Research in Berlin-Adlershof). The instrument will be moved to the SAL laboratory facilities as soon as the setup of the clean room will be completed
Acceptance tests of the Electron Microprope Analyser (EPMA) at JEOL GmbH in Freising (Germany). The instrument will be moved to the SAL laboratory facilities as soon as the setup of the clean room has been completed. Credit: DLR.



Exciting years ahead for sample return. Thanks Enrica!

EXPLORE – Career Profiles

EXPLORE – Career Profiles

Europlanet’s sister-project, EXPLORE, has been funded by the European Commission to develop Machine Learning and advanced visualisation tools to support the astronomy and planetary communities. One of the real strengths of the EXPLORE project is the diverse skills-set of the team. As the project comes to a close, we’ve asked people working on the project to reflect on their careers, their inspirations and the advice that they would pass on. Click on the images below to read their career profiles. If they look familiar, many of the team are also part of the Europlanet 2024 RI project’s GMAP activity and comms team.

We have produced an edited set of the profiles for download:

EXPLORE has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101004214.

EXPLORE Career Profiles: Lian Greijn

EXPLORE Career Profiles

Name: Lian Greijn
EXPLORE Project Role: Intern
Professional Role and Affiliation: Intern at Acri-ST & MSc student Aerospace Engineering at TU Delft
Nationality: Dutch
Current location: Toulouse, France.

1. What did you want to be when you were 10?

For a long time, I wanted to become a judge. However, when I was old enough to learn how monotone judicial texts are I quickly abandoned that dream. 

2. What was your favourite subject at school?

My favourite subject was history, I really like reading and I enjoyed how it offers a perspective on how past events shape our modern world.

3. What did you study at university? Why did you choose those topics and the places to study?

I am still studying and in my final year for my MSc in aerospace engineering, I also completed my BSc in this field both at TU Delft. I always had a big passion for space and was very intrigued by the complexity of space missions. They have such challenging design criteria and really push the boundaries of engineering, I wanted to learn more about how we design and develop them. I chose Delft because it has a very strong international aerospace programme.

4. How did you get your first job? How many jobs have you had since?

I am of course still studying and haven’t had my first ‘real’ job yet, but I found this internship by asking around a lot in my university. For example, by approaching professors, the alumni relation office, and people I met through career events.

5. What’s been the biggest piece of luck or ‘surprise twist’ you have had in your career to date?

I was very adamant about going to Toulouse for my internship due to the strong aerospace industry in this city and because I studied French for a semester. It is however quite tough to find a position from abroad especially as a non-native French speaker. I had found an alumnus of my university who worked here and asked if he could help me. He happened to approach my current supervisor at their kid’s schoolyard to ask if he would know a position, which is what got me on this project.

6. Have you had a mentor or person that inspired you? How did they help you?

I have been inspired by almost everyone I worked with. I think working together on assignments or just discussing problems can really help with thinking outside the box and with motivation in general.  

7. What are the main things you do each day?

As part of the project, I mostly spend my day programming in Python (and therefore also a lot of time googling issues). I also spend a bit of time working on public outreach, such as editing video tutorials. 

8. What do you like best about the work that you do and what do you like least?

I really enjoy the required creativity and problem solving that comes with programming. You constantly find a new issue and try to figure out how to solve it. Sometimes tasks seem very daunting at the start, but when you manage to solve it, it is very rewarding. 

What I like least is probably that most of the work is done just sitting behind a computer, I would love to move a little more and have a bit more of a change in scenery. 

9. Do you have ambitions or things that you would like to do next?

Mostly to graduate next year! 

10. What advice would you give your 10-year-old self?

A bit cliché but I would say to just enjoy life as a kid. I would also tell myself that I am not nearly as bad at maths as I like to make myself believe. 

Quick CV

  • Academic qualifications
    • BSc in Aerospace Engineering
  • Main or selected jobs to date: 
    • Internship at Acri-ST

More EXPLORE Career Profiles

EXPLORE has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101004214.

EXPLORE Career Profiles: Giacomo Nodjoumi

EXPLORE Career Profiles

Name: Giacomo Nodjoumi
EXPLORE Project Role: Co-leader of the development of L-EXPLO and L-HEX Lunar Scientific Data Applications
Professional Role and Affiliation: PhD Candidate, Constructor University
Nationality: Italian
Current location: Bremen, Germany.

1. What did you want to be when you were 10?

Space game developer, professional bass player, fighter jet pilot/astronaut… I had too many different interests and dreams.

2. What was your favourite subject at school?

Natural Sciences and informatics were the most interesting for me. But I also enjoyed chemistry and English. I really disliked humanities; now I regret that I was not more interested in those fields.

3. What did you study at university? Why did you choose those topics and the places to study?

Both my Bachelor’s and Master’s were in geology, so I mainly studies scientific fields, from chemistry to petrography and so on. My Master’z was focused on engineering geology and risk assessment and management, so the topics shifted a bit to more practical problems for risk assessment and mitigation, such as slope stability or geophysics, remote sensing and so on.

I chose these subjects for the love of natural sciences, and the desire to know more about our Earth. The Master’s was chosen essentially for the course in remote sensing (feeding my nerdy side).

4. How did you get your first job? How many jobs have you had since?

My Master’s thesis supervisor offered me one, since I made a working prototype of a multi-camera instrument for monitoring landslide. I’ve had two jobs including my actual position. The first one in the company of my supervisor, but it lasted only for three months, it was not fulfilling my expectations.

5. What’s been the biggest piece of luck or ‘surprise twist’ you have had in your career to date?

A colleague and close friend, aware of my passion for remote sensing and space, put me in contact with my current PhD supervisor. Since I always thought that working in planetary science was impossible for me, it was a life-changing event, especially since I had to move to another country for longer periods of time. The ‘surprise twist’ (even if I would describe it as a very, very biggest piece of bad luck for the whole world) was that the Covid-19 pandemic started almost immediately after my arrival in Bremen.

6. Have you had a mentor or person that inspired you? How did they help you?

No one in particular, maybe Baden-Powell (founder of the Scout Movement) inspired me in my “youth days”, but since then I’d say that any person that I met, lived with, or worked with, left me some sort of lesson which helped me grow up in different aspects of my life.

One of Baden-Powell’s mottos, ‘Estote Parati,’ which translates to ‘Be Prepared’ in English, inspired me to be ready for everyday challenges. Additionally, a point of the Scout’s Law, “A Scout’s duty is to be useful and to help others”, motivated me to strive to be a better person. 

7. What are the main things you do each day?

Drink coffee, analyse planetary data, develop Python tools, read scientific papers, write papers for my PhD, keep updated with trending technologies and – last but not least – drink more coffee!

8. What do you like best about the work that you do and what do you like least?

I really like the fact that I am pursuing almost all my passions, even if it can be very stressful and challenging.

9. Do you have ambitions or things that you would like to do next?

I would like to continue developing something that may help future generations that wants to join the planetary science community.

10. What advice would you give your 10-year-old self?

I know that may sounds a classic answer but “Listen to your mother, think less, enjoy life more, and do more exercises!”

Quick CV

  • Academic qualifications
    • Bachelor’s in Geology
    • Master’s in Engineering Geology and Risk Assessment
    • PhD Candidate in Planetary Sciences
  • Main or selected jobs to date: 
    • MsC in Engineering Geology (2016-2019)
    • Junior Remote Sensing Analyst (2019-2020)
    • PhD Candidate in planetary sciences (2020-Present)

More EXPLORE Career Profiles

EXPLORE has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101004214.

EXPLORE Career Profiles: Javier Eduardo Suárez Valencia

EXPLORE Career Profiles

Name: Javier Eduardo Suárez Valencia
EXPLORE Project Role: Researcher on the L-EXPLO and L-HEX Lunar Scientific Data Applications
Professional Role and Affiliation: PhD Candidate in Planetary Science at Constructor University.
Nationality: Colombian
Current location: Bremen, Germany

1. What did you want to be when you were 10?

I wanted to be an astronaut, especially to go to different planets.

2. What was your favourite subject at school?

Biology.

3. What did you study at university? Why did you choose those topics and the places to study?

Geology. I choose it because there was not an astronomy program in my country, and geology was still a really interesting natural science. Eventually, I was able to link the two

4. How did you get your first job? How many jobs have you had since?

My first job was as a risk management geologist, doing maps for a location in Colombia. Since then, I had two other jobs.

5. What’s been the biggest piece of luck or ‘surprise twist’ you have had in your career to date?

To start my PhD in Bremen Germany. I always worked in planetary science just for passion, but now I can make a living from it.

6. Have you had a mentor or person that inspired you? How did they help you?

Yes, another Colombian geologist, Fabian Saavedra. He showed me that we can study other planets – my professor did not have any idea of how to do that. 

7. What are the main things you do each day?

Working in my PhD, advising students in Colombia, reading.

8. What do you like best about the work that you do and what do you like least?

What I most enjoy is looking at spatial data of planetary surfaces to understand its geology. I do not enjoy debugging code!

9. Do you have ambitions or things that you would like to do next?

I want to be a university professor in a Colombian university.

10. What advice would you give your 10-year-old self?

The Universe is big and full of wonders. No matter what happens do not lose your curiosity to learn from it!

Quick CV

  • Education
    • (2021-ongoing) PhD candidate in Planetary Science, Constructor University, Bremen, Germany.
    • (2015-2018) MSc in Geology, Universidad Nacional de Colombia, Bogotá, Colombia.
    • (2010-2015) Geologist, Universidad Nacional de Colombia, Bogotá, Colombia.
  • Work
    • (2021-ongoing) Researcher, Constructor University, Bremen, Germany.
    • (2019-2021) Occasional professor, Universidad Nacional de Colombia, Bogotá, Colombia.

More EXPLORE Career Profiles

EXPLORE has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 101004214.