How global warming affects astronomical observations

How global warming affects astronomical observations

Astronomical observations from ground-based telescopes are sensitive to local atmospheric conditions. Anthropogenic climate change will negatively affect some of these conditions at observation sites around the globe, as a team of researchers led by the University of Bern and the National Centre of Competence in Research (NCCR) PlanetS report.

The quality of ground-based astronomical observations delicately depends on the clarity of the atmosphere above the location from which they are made. Sites for telescopes are therefore very carefully selected. They are often high above sea level, so that less atmosphere stands between them and their targets. Many telescopes are also built in deserts, as clouds and even water vapour hinder a clear view of the night sky.

A team of researchers led by the University of Bern and the National Centre of Competence in Research (NCCR) PlanetS shows in a study, published in the journal Astronomy & Astrophysics and presented at the Europlanet Science Congress 2022 in Granada, how one of the major challenges of our time – anthropogenic climate change – now even affects our view of the cosmos.

A blind spot in the selection process

Even though telescopes usually have a lifetime of several decades, site selection processes only consider the atmospheric conditions over a short timeframe. Usually over the past five years – too short to capture long-term trends, let alone future changes caused by global warming,” Caroline Haslebacher, lead author of the study and researcher at the NCCR PlanetS at the University of Bern, points out. The team of researchers from the University of Bern and the NCCR PlanetS, ETH Zurich, the European Southern Observatory (ESO) as well as the University of Reading in the UK therefore took it upon themselves to show the long-term perspective.

Worsening conditions around the globe

Their analysis of future climate trends, based on high resolution global climate models, shows that major astronomical observatories from Hawaii to the Canary Islands, Chile, Mexico, South Africa and Australia will likely experience an increase in temperature and atmospheric water content by 2050.  This, in turn, could mean a loss in observing time as well as a loss of quality in the observations.

Nowadays, astronomical observatories are designed to work under the current site conditions and only have a few possibilities for adaptation. Potential consequences of the climatic conditions for telescopes therefore include a higher risk of condensation due to an increased dew point or malfunctioning cooling systems, which can lead to more air turbulence in the telescope dome,” Haslebacher says.

The fact that the effects of climate change on observatories had not been taken into account before was not an oversight, as study co-author Marie-Estelle Demory says, but was not least due to the state of the art: “This is the first time that such a study has been possible. Thanks to the higher resolution of the global climate models developed through the Horizon 2020 PRIMAVERA project, we were able to examine the conditions at various locations of the globe with great fidelity – something that we were unable to do with conventional models. These models are valuable tools for the work we do at the Wyss Academy,” says the senior scientist at the University of Bern and member of the Wyss Academy for Nature.

This now allows us to say with certainty that anthropogenic climate change must be taken into account in the site selection for next-generation telescopes, and in the construction and maintenance of astronomical facilities,” says Haslebacher.

INFORMATION ABOUT THE PUBLICATION

Haslebacher et al.: Impact of climate change on site characteristics of eight major astronomical observatories, Astronomy & Astrophysics, https://www.aanda.org/10.1051/0004-6361/202142493
DOI: 10.1051/0004-6361/202142493

IMAGES

The VLT’s Laser Guide Star: A laser beam launched from VLT´s 8.2-metre Yepun telescope crosses the majestic southern sky and creates an artificial star at 90 km altitude in the high Earth´s mesosphere. The Laser Guide Star (LGS) is part of the VLT´s Adaptive Optics system and it is used as reference to correct images from the blurring effect of the atmosphere. © ESO / G. Hüdepohl
Caroline Haslebacher,
Center for Space and Habitability (CSH) and NCCR PlanetS, University of Bern
© Courtesy of Caroline Haslebacher
Dr. Marie-Estelle Demory, Wyss Academy for Nature, University of Bern
© Courtesy of Marie-Estelle Demory

SCIENCE CONTACTS

Caroline Haslebacher
Center for Space and Habitability (CSH), Department of Space Research & Planetary Sciences (WP) and NCCR PlanetS, University of Bern
Phone: +41 31 684 36 21
E-Mail: caroline.haslebacher@unibe.ch

Dr. Marie-Estelle Demory
Wyss Academy for Nature, University of Bern
E-Mail: marie-estelle.demory@wyssacademy.org

CONTACTS

EPSC2022 Press Office
+44 7756 034243
epsc-press@europlanet-society.org

FURTHER INFORMATION 

About Wyss Academy for Nature

The Wyss Academy for Nature at the University of Bern is a place of innovation, where research, business, policymakers and communities come together to co-design solutions for sustainable futures. The Wyss Academy’s mission is to turn scientific knowledge into action. Combining ambitious, innovative goals with a transformative approach, it was founded to develop innovative long-term pathways that strengthen and reconcile biodiversity conservation, human well-being and the sustainable use of natural resources in a variety of landscapes throughout the world. We co-design and implement concrete projects across a swathe of regions and countries. This global structure facilitates the replication of successes and learning. The Wyss Academy for Nature currently operates Hubs in Central Europe (Bern, Switzerland), Southeast Asia, East Africa and South America.

In December 2019, the Wyss Foundation, the University of Bern, and the Canton of Bern signed the tripartite framework agreement for the Wyss Academy for Nature at the University of Bern. In

May 2020, the Wyss Academy was founded as an independent foundation, the foundation Board of Trustees was appointed and the Director was elected. The Wyss Foundation donates within the framework of the Wyss Campaign for Nature a contribution of 100 million Swiss francs. The canton and the University of Bern contribute 50 million francs each.More information: www.wyssacademy.org

About Center for Space and Habitability (CSH)

The mission of the Center for Space and Habitability (CSH) is to foster dialogue and interactions between the various scientific disciplines interested in the formation, detection and characterization of other worlds within and beyond the Solar System, the search for life elsewhere in the Universe, and its implications for disciplines outside of the sciences. The members, affiliates and collaborators include astronomers, astrophysicists and astrochemists, atmospheric, climate and planetary scientists, geologists and geophysicists, biochemists and philosophers. The CSH is home to the CSH and Bernoulli Fellowships, which host young, dynamic and talented researchers from all over the world to conduct independent research. It actively run a series of programs to stimulate interdisciplinary research within the University of Bern including collaborations and/or open dialogue with Medicine, Philosophy and Theology. More information: https://www.csh.unibe.ch/

Bernese space exploration: With the world’s elite since the first moon landing

When the second man, “Buzz” Aldrin, stepped out of the lunar module on July 21, 1969, the first task he did was to set up the Bernese Solar Wind Composition experiment (SWC) also known as the “solar wind sail” by planting it in the ground of the moon, even before the American flag. This experiment, which was planned, built and the results analysed by Prof. Dr. Johannes Geiss and his team from the Physics Institute of the University of Bern, was the first great highlight in the history of Bernese space exploration.

Ever since Bernese space exploration has been among the world’s elite. The University of Bern has been participating in space missions of the major space organizations, such as ESA, NASA and JAXA. It is currently co-leading the European Space Agency’s (ESA) CHEOPS mission with the University of Geneva. In addition, Bernese researchers are among the world leaders when it comes to models and simulations of the formation and development of planets.The successful work of the Department of Space Research and Planetary Sciences (WP) from the Physics Institute of the University of Bern was consolidated by the foundation of a university competence center, the Center for Space and Habitability (CSH). The Swiss National Science Foundation also awarded the University of Bern the National Center of Competence in Research (NCCR) PlanetS, which it manages together with the University of Geneva.

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA

The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

2022 Farinella Prize Awarded to Julie Castillo-Rogez and Martin Jutzi

2022 Farinella Prize Awarded to Julie Castillo-Rogez and Martin Jutzi

Dr Julie Castillo-Rogez, a planetary scientist working at NASA’s Jet Propulsion Laboratory (JPL) in California (USA), and Dr Martin Jutzi, a physicist working at the Physics Institute of University of Bern (Switzerland), have been awarded jointly the 2022 Paolo Farinella Prize for their outstanding contributions to the field of “Asteroids: Physics, Dynamics, Modelling and Observations”. The award ceremony took place during the Europlanet Science Congress (EPSC) 2022 in Granada, Spain, and was followed by a 15-minute prize lecture from each of the winners.

The annual Prize was established in 2010 to honour the memory of the Italian scientist Paolo Farinella (1953-2000). The Prize acknowledges an outstanding researcher not older than 47 years (the age of Farinella when he passed away) who has achieved important results in one of Farinella’s fields of work. Each year the Prize focuses on a different research area and, in 2022, the twelfth edition was devoted to asteroids, which in recent years have become an increasingly important area of interest for the scientific community.

Dr Castillo-Rogez has made significant contributions to our understanding of the physical and chemical evolutions of small and mid-sized Solar System bodies. Through modelling and synthesis of existing data, she has gleaned information about the origins and dynamical evolution of objects from the main belt, between Mars and Jupiter, to the trans-Neptunian region, i.e. the region that extends farther from the Sun than the planet Neptune. Her multi-disciplinary expertise, which embraces geology, geophysics and planetology, has allowed her to apply increasingly sophisticated tools to understand the geochemical evolution of objects potentially characterised by volatile elements. Dr Castillo-Rogez’s contribution was critical to the success of the Dawn mission at the dwarf planet Ceres: before the mission, her studies paved the way to understanding that Ceres likely had a subsurface ocean in its past, and might still harbour brines; after the mission, her analysis of Dawn’s data advanced the hypothesis that mid-sized cold bodies could be past or present ocean worlds.

Dr Jutzi has made outstanding contributions to the study of collisional processes involving bodies ranging from small asteroids to planetary scales. In particular, he developed a state-of-the-art Smoothed Particle Hydrodynamic (SPH) shock physics code specially suited to study the regimes of collisions among small bodies where the complex effects of material strength, friction, porosity as well as gravity determine the outcome concurrently. Dr Jutzi also succeeded in reproducing the evolution of the asteroid Vesta’s observed shape following two overlapping planet-scale collisions, and even provided maps of impact excavation and deposition of ejected materials. Recently, he contributed to the numerical modelling of the impact of NASA’s DART mission on the moon of the binary asteroid Didymos, which showed that the small moon Dimorphos may be entirely reshaped by the impact.

Overall, Dr Castillo-Rogez’s and Dr Jutzi’s work have led to a deeper understanding of the nature and evolution of asteroids, both from a theoretical and an observational point of view. 

Dr Castillo-Rogez received her MS in Geophysics and her PhD in Planetary Geophysics at University of Rennes (France). She is currently Associate Scientist for the Planetary Science Directorate at Jet Propulsion Laboratory (California, USA).

Dr Jutzi received his MS in Physics at University of Bern (Switzerland) and then his PhD in Physics at University of Bern and Nice Observatory (France). He now holds the position of Senior Researcher at University of Bern.

Before receiving the Prize, Dr Castillo-Rogez commented “I am honored to win this prize, especially as there are so many deserving colleagues out there. The bulk of my work is based on the observations returned by the Cassini-Huygens and Dawn mission, both built on highly successful international collaborations. Working with these teams has been an incredible experience and led to long-lasting friendships on both sides of the Atlantic. So this makes receiving this prize at EPSC 2022 very special. Unfortunately, I have never had the privilege to meet Dr. Farinella, although I have many times referred to his work.”

Dr Jutzi said: “I am very honoured to be awarded the Paolo Farinella Prize. For me this is an important recognition of my contribution to the understanding of asteroid physics, in particular the impact processes that determined the evolution and current state of these objects – some of them being explored by ongoing space missions as we speak. I am grateful to my scientific mentors and colleagues who have helped me achieve this.”

 About the Paolo Farinella Prize

The Paolo Farinella Prize (https://www.europlanet-society.org/paolo-farinella-prize/) was established to honour the memory and the outstanding figure of Paolo Farinella (1953-2000), an extraordinary scientist and person, in recognition of significant contributions given in the fields of interest of Farinella, which span from planetary sciences to space geodesy, fundamental physics, science popularisation, and security in space, weapons control and disarmament. The winner of the prize is selected each year on the basis of his/her overall research results in a chosen field, among candidates with international and interdisciplinary collaborations, not older than 47 years, the age of Farinella when he passed away, at the date of 25 March 2000. The prize was first proposed during the “International Workshop on Paolo Farinella the scientist and the man,” held in Pisa in 2010, supported by the University of Pisa, ISTI/CNR and by IAPS-INAF (Rome).

The first “Paolo Farinella Prize” was awarded in 2011 to William Bottke, for his contribution to the field of “physics and dynamics of small solar system bodies”. In 2012 the Prize went to John Chambers, for his contribution to the field of “formation and early evolution of the solar system”. In 2013, to Patrick Michel, for his work in the field of “collisional processes in the solar system.” In 2014, to David Vokrouhlicky for his contributions to “our understanding of the dynamics and physics of solar system, including how pressure from solar radiation affects the orbits of both asteroids and artificial satellites”, in 2015 to Nicolas Biver for his studies of “the molecular and isotopic composition of cometary volatiles by means of submillimetre and millimetre ground and space observations”, and in 2016 to Kleomenis Tsiganis for “his studies of the applications of celestial mechanics to the dynamics of planetary systems, including the development of the Nice model”. In 2017, to Simone Marchi for his contributions to “understanding the complex problems related to the impact history and physical evolution of the inner Solar System, including the Moon”. In 2018, to Francis Nimmo, for his contributions in our “understanding of the internal structure and evolution of icy bodies in the Solar System and the resulting influence on their surface processes”. In 2019, to Scott Sheppard and Chad Trujillo, for their outstanding collaborative work for the “observational characterisation of the Kuiper belt and the Neptune-trojan population”. In 2020, to Jonathan Fortney and Heather Knutson for their significant contribution in our “understanding of the structure, evolution and atmospheric dynamics of giant planets”. Finally, in 2021, to Diana Valencia and Lena Noack, for their significant contributions in “our understanding of the interior structure and dynamics of terrestrial and super-Earth exoplanets”.

Images

Julie Castillo-Rogez. Credit: J Castillo-Rogez

Martin Jutzi. Credit: M Jutzi

The Farinella Prize winners 2022, Julie Castillo-Rogez of JPL (left) and Martin Jutzi of the University of Bern (right). The prizes were presented by Alessandro Rossi, IFAC-CNR, Italy.

Science Contacts

Julie Castillo-Rogez
Jet Propulsion Laboratory
julie.c.castillo@jpl.nasa.gov

Martin Jutzi
University of Bern
Space Research & Planetary Sciences
+41 31 684 85 49
martin.jutzi@andre-gallispace-unibe-ch

Media Contacts

EPSC2022 Press Office
+44 7756 034243
epsc-press@europlanet-society.org

Notes for Editors

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA

The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

Earth-like exoplanets unlikely to be another ‘pale blue dot’

Earth-like exoplanets unlikely to be another ‘pale blue dot’

When searching for Earth-like worlds around other stars, instead of looking for the ‘pale blue dot’ described by Carl Sagan, new research suggests that a hunt for dry, cold ‘pale yellow dots’ might have a better chance of success. The near balance of land-to-water that has helped life flourish on Earth could be highly unusual, according to a Swiss-German study presented at the Europlanet Science Congress 2022 in Granada. 

Tilman Spohn and Dennis Höning studied how the evolution and cycles of continents and water could shape the development of terrestrial exoplanets. Results from their models suggest that planets have approximately an 80 percent probability of being mostly covered by land, with 20 percent likely to be mainly oceanic worlds. Barely one percent of the outcomes had an Earth-like distribution of land and water.

“We Earthlings enjoy the balance between land areas and oceans on our home planet. It is tempting to assume that a second Earth would be just like ours, but our modelling results suggest that this is not likely to be the case,” said Prof Spohn, Executive Director of the International Space Science Institute in Bern, Switzerland.

The team’s numerical models suggest that the average surface temperatures would not be too different, with perhaps a 5° Celsius variation, but that the land-to-ocean distribution would affect the planets’ climates. An ocean world, with less than 10 percent land, would likely be moist and warm, with a climate similar to the Earth in the tropic and subtropic epoch that followed the asteroid impact that caused the extinction of the dinosaurs. 

The continental worlds, with less than 30 percent oceans, would feature colder, drier and harsher climates. Cool deserts might occupy in the inner parts of landmasses, and overall they would resemble our Earth sometime during the last Ice Age, when extensive glaciers and ice-sheets developed.

On Earth, the growth of continents by volcanic activity and their erosion by weathering is approximately balanced. Life based on photosynthesis thrives on land, where it has direct access to solar energy. The oceans provide a huge reservoir of water that enhances rainfall and prevent the present climate from becoming too dry. 

“In the engine of Earth’s plate tectonics, internal heat drives geologic activity, such as earthquakes, volcanoes and mountain building, and results in the growth of continents. The land’s erosion is part of a series of cycles that exchange water between the atmosphere and the interior. Our numerical models of how these cycles interact show that present-day Earth may be an exceptional planet, and that the equilibrium of landmass may be unstable over billions of years. While all the planets modelled could be considered habitable, their fauna and flora may be quite different,” said Prof Spohn.

Further information:

Spohn, T. and Hoening, D.: Land/Ocean Surface Diversity on Earth-like (Exo)planets: Implications for Habitability, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-506, 2022. https://meetingorganizer.copernicus.org/EPSC2022/EPSC2022-506.html

Images

Terrestrial planets can evolve in three scenarios of land/ocean distribution: covered by lands, oceans or an equal mix of both. The land-covered planet is the most probable scenario ( around 80%), while our “equal mix” Earth (<1% chance) is even more unique than previously thought.

Modelling shows that the probabilities of three very-different looking types of terrestrial planets  (covered with land, ocean or an equal mix of both) vary widely, while highly impacting their climate and thus their habitability.
Modelling shows that the probabilities of three very-different looking types of terrestrial planets (covered with land, ocean or an equal mix of both) vary widely, while highly impacting their climate and thus their habitability. Credit: Europlanet 2024 RI/T. Roger.

Image showing the Earth from a distance of 6 billion kilometres, taken by the NASA Voyager 1 spacecraft in 1990. It has become iconic as the “pale blue dot”. The image was newly processed and released by NASA in 2020.  

Image showing the Earth from a distance of 6 billion kilometres, taken by the NASA Voyager 1 spacecraft in 1990. It has become iconic as the “pale blue dot”.
Image showing the Earth from a distance of 6 billion kilometres, taken by the NASA Voyager 1 spacecraft in 1990. It has become iconic as the “pale blue dot”. The image was newly processed and released by NASA in 2020. Credit:

Science Contacts

Prof. Tilman Spohn
International Space Science Institute
Bern, Switzerland 
tilman.spohn@issibern.ch

Media Contacts

EPSC2022 Press Office
+44 7756 034243
epsc-press@europlanet-society.org

Notes for Editors

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA

The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

Regional Hubs at EPSC2021

Regional Hubs at EPSC2021

Let us show you how the Europlanet Society and its regional hubs can serve you. We will present you the benefits of joining the hubs and will gladly hear about your needs.

12:45 Welcome (Séverine Robert)

12:50 Why am I a member of the EPS? (Miguel Lopez Valverde)

12:55 Funded project: Mars Atlas (Henrik Hargitai)

13:05 Why am I a member of the EPS? (Jonathan Merrison)

13:10 Funded project: Storytelling workshop (Arianna Piccialli)

13:20 Why am I a member of the EPS? (Nicholas Achilleos)

13:25 Collaborative framework: Europlanet Telescope Network (Manuel Scherf)

13:35 Why am I a member of the EPS? (Lena Noack)

13:40 General discussion: What do you want the EPS to do for you? (All Panelists)

14:10 Wrap up (Séverine Robert)

14:15 End of meeting

Sharehttps://meetingorganizer.copernicus.org/EPSC2021/session/41824

The Europlanet Society Regional Hubs support the development of planetary science at a national and regional level, particularly in countries and areas that are currently under-represented within the community.

Our Hub Committees organise networking events and workshops to support the research community, as well as to build links with amateur astronomers, industrial partners, policymakers, educators, the media and the wider public. Europlanet Society members are welcome to participate in the activities of one or more Hubs.

The 10 Regional Hubs established to date are: