Eismonde: 1. Europa
May 16, 2024

Eismonde Sammlung von Bildungsressourcen: 1. Europa

In dieser Lektion befassen wir uns mit dem Jupitermond Europa, dem Ozean unter seiner eisigen Oberfläche und seinem Potenzial als Lebensraum.

Zur Erinnerung: Lehrernotizen, Präsentationen und alle Inhalte können zur Anpassung und Verwendung in Ihrem Klassenzimmer heruntergeladen werden. Vergessen Sie nur nicht, uns als Quelle anzugeben (siehe “Nutzung der Ressourcen”).

Übersicht

Gliederung der Aktivität: Verstehen der geologischen Prozesse, die auf Europa ablaufen, und wie diese das Potenzial für Leben in dieser Umgebung beeinflussen.

Altersgruppe:

10-14

Benötigte Ausrüstung:

  • Computer
  • Projektor

Zeit der Lektion:

45 Minuten (einschließlich 1 Video)

Behandelte Themen:

  • Chemie
  • Geologische Prozesse
  • Biologie (Leben in Extremen)
  • Astronomie

Lernergebnisse

Nach Abschluss dieser Aktivität können die SchülerInnen:

  • Verstehen Sie die Zusammensetzung von Europa
  • Erklären Sie die Entstehung der Risse auf der Oberfläche von Europa
  • Beschreiben Sie die Beschaffenheit der Ozeane unter der Oberfläche von Europa
  • Verstehen von Extremophilen und Leben im Weltraum.

Einführung in Europa

Der Jupiter hat mindestens 92 Monde, von denen einige einen Durchmesser von weniger als 1 Kilometer haben. Europa ist der kleinste der vier größten Monde des Jupiters, die als Galileische Monde bekannt sind, weil sie 1610 von Galileo Galilei entdeckt wurden. Sie können die vier Galileischen Monde durch ein Fernglas oder ein kleines Teleskop sehen. 

Europa ist der sechstgrößte Mond in unserem Sonnensystem und hat etwa die gleiche Größe wie der Erdmond. Sie hat die glatteste Oberfläche aller bekannten Monde, mit sehr wenigen Kratern. In der Tat hat Europa die glatteste Oberfläche aller bekannten Objekte in unserem Sonnensystem.

Einführung in die Missionen zur Erforschung Europas und seiner Zusammensetzung und Geologie

Da wir bisher nur über begrenzte Daten über Europa verfügen, die von Raumfahrtmissionen gesammelt wurden, wissen wir immer noch vieles nicht über diesen Jupitermond. Die Mission der Europäischen Weltraumorganisation (ESA), Jupiter Icy Moons Explorer (JUICE), und die Europa-Clipper-Mission der NASA werden dazu beitragen, dies zu ändern. JUICE, die im April 2023 startete, wird 2031 beim Jupiter eintreffen und Europa zweimal überfliegen, bevor sie in eine Umlaufbahn um Ganymed einschwenkt. Europa Clipper, das 2024 startet und Jupiter 2030 erreicht, wird über 50 Vorbeiflüge an Europa machen.

Man nimmt an, dass die innere Struktur von Europa aus einem metallischen Kern besteht, der von Silikatgestein umgeben ist, das den größten Teil der Masse des Mondes ausmacht. Darüber befindet sich ein globaler Ozean aus flüssigem Wasser, der von einer dicken Eiskruste umgeben ist. Die Temperaturen auf Europa sind extrem kalt (- 220 Celsius bis – 160 Celsius).

Die Oberfläche von Europa

Trotz seiner ungewöhnlichen Glätte ist das Oberflächeneis von Europa durch lange, dünne, parallele Streifen gekennzeichnet.

Diese Streifen sind eigentlich Risse, die als Lineae bezeichnet werden. Die Lineae werden durch die Gezeitenerwärmung verursacht. Europas Umlaufbahn um Jupiter ist nicht vollkommen kreisförmig, so dass es Zeiten gibt, in denen die beiden Körper näher oder weiter voneinander entfernt sind. So wie die Anziehungskraft des Mondes die Ozeane der Erde dazu bringt, sich auf beiden Seiten auszuwölben, so dehnt und staucht die Intensität der Anziehungskraft des Jupiters auf Europa den gesamten Mond an verschiedenen Stellen seiner Umlaufbahn. Diese Verformung führt zu Rissen in der Eiskruste und bildet die Linien.

Anhaltspunkte aus den Linien 

Material aus dem Ozean unterhalb und innerhalb der Eiskruste kann durch die Linien zur Mondoberfläche sickern. Dies ist wichtig, weil es darauf hindeutet, dass es einen Materialaustausch zwischen dem Ozean und der Kruste gibt. Obwohl die bisherigen Raumfahrtmissionen (einschließlich JUICE und Europa Clipper) keinen direkten Zugang zum Ozean haben, kann die Analyse des Materials, das durch die Linien sickert, einen sehr guten Hinweis auf die Zusammensetzung und Dichte des Ozeans geben. 

Chaos-Terrain

Regionen auf Europas Oberfläche, die besonders rissig sind, werden als “Chaos-Terrain” bezeichnet. Diese Gebiete sind besonders interessant für die Untersuchung von Material, das aus dem unterirdischen Ozean durchgesickert ist. Die blau-weißen Gebiete weisen auf relativ reines Wassereis hin, während die rötlichen Bereiche Wassereis enthalten, das mit hydratisierten Salzen, möglicherweise Magnesiumsulfat oder Schwefelsäure, vermischt ist. Das gewaltige Magnetfeld des Jupiters fängt hochenergetische Teilchen ein und erzeugt eine starke Strahlung, die die Oberfläche von Europa ständig bombardiert. Die Wechselwirkung der hochenergetischen Teilchen “verwittert” die Oberfläche des Mondes, indem sie chemische Reaktionen in Gang setzt und die physikalischen Eigenschaften des Eises, wie etwa die Korngröße, verändert.

Unterirdischer Ozean

Europa ist als Mond einzigartig und interessant. Frühere Missionen haben gezeigt, dass Europa ein Magnetfeld hat, das durch eine Art leitende Flüssigkeit unter der Eiskruste erzeugt wird. Messungen des Magnetfelds von Europa, der Dichte des Mondes (abgeleitet von seiner Größe und seinem Schwerefeld) und die Analyse der Eigenschaften seines Oberflächeneises deuten darauf hin, dass Europa einen unterirdischen Ozean aus salzigem Wasser besitzt, der saurer ist als irdisches Meerwasser. Obwohl die Temperaturen auf Europa sehr kalt sind, könnte ein Ozean aus flüssigem Wasser erhalten bleiben, da Salz den Gefrierpunkt von Wasser herabsetzt. Der salzige Ozean steht in Kontakt mit der felsigen Hülle um den Kern von Europa. Dies ist für Wissenschaftler interessant, da die Wechselwirkung zwischen salzhaltigem Wasser und Gestein im Ozean derjenigen ähnelt, die das Konzept der “Ursuppe” für die Entstehung des Lebens auf der Erde nahelegt, wonach organische Moleküle in uralten Wassermassen vermischt wurden und sich zu lebenden Organismen zusammensetzten. 

Hier haben wir zwei Becher, die beide mit gefärbtem Leitungswasser gefüllt sind.  In das rechte Becherglas geben wir gewöhnliches Kochsalz, Natriumchlorid. Die Probe auf der linken Seite besteht nur aus Wasser mit Lebensmittelfarbe. Als Nächstes fügen wir Trockeneis, festes Kohlendioxid, hinzu, um die beiden Lösungen zu kühlen. Kohlendioxid ist bei jeder Temperatur unter minus 80 Grad Celsius fest. Nun vergleichen wir die beiden Proben. Die Probe auf der linken Seite mit dem Salz hat einen dicken Matsch gebildet. Die Probe auf der rechten Seite ohne das Salz ist vollständig gefroren. 

Wenn sich das Salz im Wasser auflöst, zerfällt es in Natrium- und Chlor-Ionen. Die Ionen diffundieren durch das Wasser und verhindern, dass die Wassermoleküle eng genug beieinander liegen und die richtige Ausrichtung haben, um sich zu einer festen Form (Eis) zusammenzufinden. Das Wasser wird jedoch kälter und die Temperatur kann unter den Gefrierpunkt von reinem Wasser sinken. Obwohl der Ozean auf Europa sehr kalt ist, kann er als Flüssigkeit erhalten bleiben, da er salzig ist und der Gefrierpunkt des Wassers dadurch gesenkt wird.

Extremophile

Extremophile sind Organismen, die in extremen Klimazonen überleben können. Alle Organismen auf Europa müssten wahrscheinlich in der Lage sein, bei extrem kalten Temperaturen zu überleben. Hydrothermale Schlote im Ozean könnten jedoch auch Mikrokosmen schaffen, die Leben beherbergen könnten, genau wie auf der Erde. In der Nähe von Schloten könnten die Temperaturen deutlich höher sein als im umgebenden Ozean – diese Umgebungen könnten sehr heiß sein! Obwohl die Oberfläche von Europa also sehr kalt ist, könnte es in den Ozeanen des Mondes recht gemäßigt sein.

Potenzial für das Leben

Diskutiert in Kleingruppen, ob ihr glaubt, dass es auf Europa Leben gibt, und wenn ja, welche Anpassungen und Merkmale ihr erwarten würdet.

  • Würde das Leben nur aus Mikroorganismen bestehen, oder könnten sich auch größere Lebensformen entwickeln?
  • Welche Art von Stoffwechselprozessen könnten sie haben?

Denken Sie daran, dass wir die Ankunft von JUICE und Europa Clipper am Jupiter abwarten müssen, um mehr über Europa herauszufinden, und dass wir möglicherweise noch weitere Missionen entsenden müssen, um die Frage, ob es unter der eisigen Oberfläche Leben gibt, endgültig zu beantworten. Im Moment gibt es keine richtigen oder falschen Antworten!

Rückblick

Nach dieser Lektion sollten die Schüler in der Lage sein: 

  • Beschreiben Sie die Geologie und die Zusammensetzung von Europa.
  • Verstehen Sie, wie Material zwischen dem unterirdischen Ozean und der Eiskruste durch Risse (Lineae) ausgetauscht wird, die durch Gezeitenverformung entstehen.
  • Verstehen Sie Extremophile und das Potenzial für Leben auf Europa.

Zusätzliche Aktivitäten

Bitten Sie Ihre Klasse, einen Aufsatz zu schreiben, in dem sie argumentiert, ob wir Leben finden könnten (mit Angabe von Informationsquellen), oder zu zeichnen, wie ihrer Meinung nach Leben auf Europa aussehen könnte – wir würden uns freuen, ihre Ideen zu sehen.


Quellen

Europa im Detail (NASA): https://solarsystem.nasa.gov/moons/jupiter-moons/europa/in-depth/

Juice Mission (ESA): https://www.esa.int/Science_Exploration/Space_Science/Juice

Europa Clipper (NASA): https://europa.nasa.gov

Europas Kern, Mantel und Wasserhülle (Geo Girl): https://www.youtube.com/watch?v=dJ-biPZG8Jw

Download der Präsentation

PPT (5 MB)

PDF (2 MB)

Ressourcen für Lehrer herunterladen

Word (238 KB)

PDF (294 KB)