Eismonde: 2. Ganymed
May 17, 2024

Eismonde Sammlung von Bildungsressourcen: 2. Ganymed

In dieser Lektion befassen wir uns mit dem Jupitermond Europa, dem Ozean unter seiner eisigen Oberfläche und seinem Potenzial als Lebensraum.

Zur Erinnerung: Lehrernotizen, Präsentationen und alle Inhalte können zur Anpassung und Verwendung in Ihrem Klassenzimmer heruntergeladen werden. Vergessen Sie nur nicht, uns als Quelle anzugeben (siehe “Nutzung der Ressourcen”).

Übersicht

Gliederung der Aktivität: Verstehen Sie den Magnetismus und wie Polarlichter auf der Erde und auf Ganymed entstehen.

Altersgruppe:

10-14

Benötigte Ausrüstung:

  • Computer
  • Projektor

Zeit der Lektion:

45 Minuten (einschließlich 1 Video)

Behandelte Themen:

  • Chemie
  • Geologische Prozesse
  • Biologie (Leben in Extremen)
  • Astronomie

Lernergebnisse

 Nach Abschluss dieser Aktivität werden die SchülerInnen verstehen:

  • Warum manche Monde und Planeten Magnetfelder haben 
  • Wie Krater zur Datierung geologischer Oberflächen genutzt werden können 
  • Was verursacht Polarlichter? 

Einführung zu Ganymed

Der Jupitermond Ganymed ist der größte bekannte Mond in unserem Sonnensystem.  Mit einem Durchmesser von 5268 Kilometern ist er fast 10 % größer als Merkur. Wie sein galileischer Schwestermond Europa hat Ganymed eine Eiskruste, die einen sehr tiefen unterirdischen Ozean bedeckt. Die Ozeane der Erde sind im Durchschnitt etwa 4 Kilometer tief, und die tiefste Stelle, der Marianengraben, reicht bis 11 Kilometer unter die Oberfläche. Der Ozean von Ganymed ist vermutlich zehnmal tiefer (etwa 100 Kilometer) und liegt unter einer 150 Kilometer langen Eiskruste begraben. Ganymed ist auch deshalb einzigartig, weil er der einzige bekannte Mond mit einem Magnetfeld ist.

Die Struktur von Ganymed

Im Gegensatz zum superglatten Europa weist die Oberfläche von Ganymed Berge, Täler und Krater auf. Etwa 40 % der Oberfläche sind von geologisch alten, dunklen Regionen mit zahlreichen Einschlagskratern bedeckt, von denen einige 4 Milliarden Jahre in die Frühzeit des Sonnensystems zurückreichen! Die verbleibenden 60 % der Oberfläche sind von hellerem, stärker reflektierendem Gelände bedeckt, das in jüngerer Zeit geologische Aktivität erfahren hat (z. B. Risse, Deformation oder Auftauchen). Dieses jüngere Terrain weist eine geringere Anzahl von Kratern auf, da es weniger Zeit hatte, Einschläge zu erleben. Das Hubble-Weltraumteleskop entdeckte auf Ganymed Ozon, was darauf hindeutet, dass es eine dünne Sauerstoffatmosphäre gibt, die durch die Wechselwirkung geladener Teilchen aus dem Strahlungsgürtel des Jupiters mit den Wassermolekülen auf der eisigen Oberfläche des Mondes entsteht.

Es gibt noch viele Fragen über die Oberfläche und die innere Geologie von Ganymed. Die bisherigen Beobachtungen von Missionen und Teleskopen deuten darauf hin, dass Ganymed einen metallischen Eisenkern hat, der von einer Schale aus Silikatgestein umgeben ist, die sich unter dem globalen Ozean und der Eiskruste befindet. Die JUICE-Mission der Europäischen Weltraumorganisation (ESA), die Ganymed überfliegen und schließlich umkreisen wird, verfügt über eine Reihe von Instrumenten zur Untersuchung der Mondstruktur. Ganymed wird jedoch kein Hauptziel für künftige astrobiologische Missionen sein. Es wird angenommen, dass sich am Boden des Ozeans eine Eisschicht befindet, die verhindert, dass chemische Nährstoffe aus der darunter liegenden felsigen Hülle in den Ozean des Mondes gelangen. Das bedeutet, dass im Gegensatz zu Europa oder Enceladus nur sehr wenige chemische Reaktionen stattfinden könnten, um die für das Leben erforderlichen komplexen Moleküle zu bilden. Es gibt auch keine Hinweise auf eine Energiequelle, die die Ozeane auf bewohnbare Temperaturen erwärmen könnte, anders als bei Europa und Enceladus, die über hydrothermale Schlote verfügen.

Einführung in den planetarischen Magnetismus

Einige felsige Planeten, darunter die Erde, Merkur und Ganymed, erzeugen Magnetfelder. Magnetismus ist ein physikalisches Phänomen, das durch die Bewegung einer elektrischen Ladung hervorgerufen wird und zu Anziehungs- und Abstoßungskräften zwischen Objekten aus magnetischen Materialien (wie Eisen) führt. In planetarischen Körpern werden Magnetfelder durch die Wechselwirkung zwischen einem sich im Inneren bewegenden (konvektiven) magnetischen Material, wie geschmolzenem Gestein oder Metall, und der Rotation des planetarischen Körpers erzeugt. Dies führt zu einem ständig fließenden elektrischen Strom, der eine Magnetosphäre erzeugt. 

Magnetische Felder auf Ganymed

Die Entdeckung eines Magnetfelds auf Ganymed (durch die Raumsonde Galileo im Jahr 1996) war eine Überraschung – bei einer solchen Entfernung von der Sonne wurde erwartet, dass sein Kern zu einer festen Masse abgekühlt ist, was den für die Erzeugung eines Magnetfelds erforderlichen Elektronenfluss verhindert. Man nimmt an, dass das Vorhandensein eines Magnetfeldes auf Ganymed auf die Gezeitenerwärmung zurückzuführen ist, die sich aus der nicht kreisförmigen Umlaufbahn des Mondes um Jupiter ergibt. Diese Erwärmung sorgt dafür, dass der Eisenkern geschmolzen bleibt. Die Konvektion innerhalb des Kerns erzeugt in Verbindung mit der Rotation von Ganymed einen Magnetdynamo. Das Magnetfeld von Ganymed ist im Vergleich zum enormen Magnetfeld des Jupiters klein, aber stark genug, um definierte Grenzen einer ausgeprägten Magnetosphäre zu bilden. 

Hintergrundinformationen zum Video: In diesem Video haben wir einen großen Neodym-Magneten unter die leere Leinwand gelegt. Die Leinwand ist in Plastik eingewickelt, um den Reibungskoeffizienten zu erzeugen. Eisenpulver ist über die Leinwand gestreut und wird durch das Magnetfeld des Neodyms beeinflusst. Dies ermöglicht eine visuelle Darstellung der Magnetfelder um Himmelskörper, wie Ganymed und sogar den Planeten Erde.

Einführung in Polarlichter

Ein deutliches Anzeichen für ein Magnetfeld auf Ganymed ist das Auftreten von Polarlichtern um seinen Nord- und Südpol. Polarlichter sind spektakuläre Lichtbänder, die den Himmel schmücken und durch die Wechselwirkung elektrisch geladener Teilchen verursacht werden. Die auf der Erde sichtbaren Polarlichter, das Nordlicht und die Aurora Borealis, werden durch die Energie verursacht, die bei der Kollision von energiereichen Teilchen, die von der Sonne ausgesandt werden, mit Sauerstoff- und Stickstoffatomen in der Erdatmosphäre freigesetzt wird. 

Polarlichter am Jupiter

Das starke Magnetfeld des Jupiters, das 20.000 Mal stärker ist als das der Erde, erzeugt die stärksten Polarlichter im Sonnensystem. Während die Aurorae auf der Erde vorübergehend sind und nur bei intensiver Sonnenaktivität auftreten, sind die Aurorae auf dem Jupiter permanent und haben eine variable Intensität. Jupiters Polarlichter werden durch elektrisch geladene Schwefel- und Sauerstoffionen verursacht, die von Jupiters Vulkanmond Io ausgespuckt werden. Zu Jupiters Polarlichtspielen gehören auch Röntgeneruptionen, die alle 27 Minuten auftreten. Diese werden durch Vibrationen in den Magnetfeldlinien des Planeten verursacht, die Wellen von Plasma (ionisiertes Gas) erzeugen, die schwere Ionenpartikel entlang der Magnetfeldlinien schießen, bis sie in der Atmosphäre des Planeten zerschellen und Energie in Form von Röntgenstrahlen freisetzen.

Polarlichter auf Ganymed

Wechselwirkungen geladener Teilchen, die im Zusammenspiel der Magnetosphären von Ganymed und Jupiter gefangen sind, erzeugen auch Polarlichter um die Pole von Ganymed. Diese Polarlichter schwanken während der Umlaufbahn von Ganymed aufgrund von Schwankungen im Magnetfeld von Jupiter und dem Verhalten des Ozeans unter der Oberfläche von Ganymed hin und her. Die Oszillation von Ganymeds Polarlichtern kann daher Hinweise auf das Innere des Mondes und den Ozean geben, in dem das Magnetfeld des Mondes erzeugt wird. 

Rückblick

Nach dieser Lektion sollten die Schüler in der Lage sein: 

  • Verstehen Sie den Magnetismus und das Magnetfeld von Ganymed
  • Verstehen, wie Krater zur Datierung geologischer Oberflächen verwendet werden können
  • Verstehen Sie die Entstehung von Polarlichtern.

Quellen

Weitere Informationen finden Sie in den folgenden Quellen:

Ganymed in der Tiefe (NASA): https://solarsystem.nasa.gov/moons/jupiter-moons/ganymede/in-depth/

Juice Mission (ESA): https://www.esa.int/Science_Exploration/Space_Science/Juice

Die Präsentation herunterladen

PPT (5 MB)

PDF (2 MB)

Ressourcen für Lehrer herunterladen

Word (232 KB)

PDF (262 KB)