EPSC 2012: The magnetic wake of Pulsars
September 28, 2012

The magnetic wake of Pulsars

Pulsars are among the most extreme stars in the Universe: dense balls of matter which are heavier than the Sun, yet only a few tens of kilometres in diameter. They rotate rapidly (up to several hundred revolutions per second) and flash like lighthouse beacons – hence the name, which is short for pulsating star. And yet despite these exotic properties, pulsars are like our Sun in one way at least: two have been observed to be home to planetary systems.

In work presented to the European Planetary Science Congress in Madrid on Friday 28 September, Fabrice Mottez (Paris Observatory) makes a series of predictions about the properties of planetary systems around pulsars. His team’s work has implications both for how to discover these planets, and for their formation, evolution and properties.

“Pulsars and their planetary systems work a bit like giant electric generators,” says Mottez. “If the conditions are right, the magnetic field and stellar wind of the pulsar can interact with planets and create a powerful electromagnetic wake around the planets.”

This phenomenon may be visible from Earth, which would provide a new method of detecting planets around pulsars. But it has even greater importance for how pulsar planet systems evolve.

When objects such as stars or planets radiate, they lose energy. And while the forces unleashed by the wakes around pulsar planets are not large enough to have a major effect on the planets’ orbits, they are expected to have much more profound effects on smaller bodies like asteroids and comets.

“Depending on the direction of their orbits, asteroids and comets could be thrown out into distant orbits or dragged down onto the pulsar’s surface. Even for objects as big as a kilometre in diameter, this could happen in less than 10 000 years, which is very rapid on astronomical timescales,” says Mottez.

While these phenomena have only a small impact on the orbital motions of planets, Mottez’s work is an important step towards better understanding how circumpulsar planets may form.

Pulsars are the dense cores leftover from large stars after they explode in a supernova. Although supernovae are extremely violent, it is thought that planets surrounding an exploding star can survive the blast, albeit in a heavily disrupted orbit. However, planetary survivors like these are not the only kind of planet that could in theory exist around a pulsar.

Planets form from discs of matter that gradually accrete around stars, usually when the star has just been born. However, it is thought that the debris thrown out by supernovae could provide material that triggers a second burst of planet formation around pulsars, shortly after the explosion.

The disruptive effects of the electromagnetic wake on small objects could have profound consequences for the formation of such second generation planets.

SCIENCE CONTACT:

Fabrice Mottez
Observatoire de Paris
PRESS CONTACTS:

Anita Heward
EPSC 2012 Press Officer
Europlanet RI
Mob: +44 7756 034243
Email: anita.heward@europlanet-eu.org

IMAGES

A: Planets around a pulsar
This artist’s impression shows the planetary system around pulsar PSR B1257+12, one of two pulsars known to be host to at least one planet. Research by Fabrice Mottez (Paris Observatory), presented at the European Planetary Sciences Congress on 28 September, finds that planets around pulsars may have powerful electromagnetic wakes around them. These wakes have implications both for how pulsar planets form, and for how they can be detected.
Credit: NASA/JPL-Caltech/R. Hurt (SSC)
http://www.nasa.gov/images/content/397961main_HoH1.jpg

B: The Crab pulsar
This image, which combines data from the Hubble Space Telescope (visible light), Spitzer Space Telescope (infrared) and Chandra X-ray Observatory (X-rays) shows the Crab Pulsar. The X-ray emissions (in blue) show the location of high-energy phenomena around the rapidly spinning star. The visible and infrared light (shown in red) traces the location of debris thrown out by the supernova that destroyed the Crab Pulsar’s progenitor star. Although it is not known whether the Crab Pulsar has planets, it is thought that the debris surrounding pulsars can form planetary systems. Work by Fabrice Mottez (Paris Observatory), presented at the European Planetary Sciences Congress on 28 September, shows how electromagnetic phenomena in pulsar systems can greatly affect the motion of small bodies like asteroids and comets that form the building blocks of planets. Credit: X-Ray: NASA/CXC/J.Hester (ASU); Optical: NASA/ESA/J.Hester & A.Loll (ASU); Infrared: NASA/JPL-Caltech/R.Gehrz (Univ. Minn.)
http://www.spitzer.caltech.edu/images/2857-sig09-009-NASA-s-Great-Observatories-View-of-the-Crab-Nebula

FURTHER INFORMATION

EUROPEAN PLANETARY SCIENCE CONGRESS 2012

The European Planetary Science Congress (EPSC) is the major European meeting on planetary science and attracts scientists from Europe and around the World. The 2012 programme includes more than 50 sessions and workshops. The EPSC has a distinctively interactive style, with a mix of talks, workshops and posters, intended to provide a stimulating environment for discussion.

This year’s meeting will take place at the IFEMA-Feria de Madrid, Spain, from Sunday 23 September to Friday 28 September 2012. EPSC 2012 is organised by Europlanet, a Research Infrastructure funded under the European Commission’s Framework 7 Programme, in association with the European Geosciences Union, with the support of the Centro de Astrobiología of Spain’s Instituto Nacional de Técnica Aeroespacial (CAB-INTA).

Details of the Congress and a full schedule of EPSC 2012 scientific sessions and events can be found at the official website: http://www.epsc2012.eu/

EUROPLANET

The Europlanet Research Infrastructure is a major (€6 million) programme co-funded by the European Union under the Seventh Framework Programme of the European Commission.

The Europlanet Research Infrastructure brings together the European planetary science community through a range of Networking Activities, aimed at fostering a culture of cooperation in the field of planetary sciences, Transnational Access Activities, providing European researchers with access to a range of laboratory and field site facilities tailored to the needs of planetary research, as well as on-line access to the available planetary science data, information and software tools, through the Integrated and Distributed Information Service. These programmes are underpinned by Joint Research Activities, which are developing and improving the facilities, models, software tools and services offered by Europlanet RI.

Europlanet Project website: www.europlanet-ri.eu
Europlanet Outreach website: www.europlanet-eu.org/outreach
Follow #epsc2012 @europlanetmedia on Twitter