Submit your abstracts for EPSC2021 before 26 May: Reminder of SB (Small Bodies) sessions
May 17, 2021

Submit your abstracts for EPSC2021 before 26 May: Reminder of SB (Small Bodies) sessions

SB1 | SB3 | SB4 | SB5 | SB6 | SB7 | SB9 | SB10 | SB11 | TP1

The coordinators of the EPSC2021 Small Bodies (SB) program invite scientists to participate in the congress, submit contributions about comets, KBOs, rings, asteroids, meteorites, dust science and share their research with colleagues and friends. This year we have organised a rich program which includes the following sessions:

SB1 – Surface and interiors of small bodies and meteorite parent bodies: thermal properties and evolution

The asteroids in particular and the asteroid-comet-dwarf planet continuum in general bear the signature of the birth of the solar system. Their observed properties allow for testing theories regarding the evolution of the solar system’s planetary objects and of their prospective development. Additional important insights into this exciting field of research are provided by the laboratory investigations of the samples delivered to the Earth in the form of meteorites and by sophisticated numerical models. The session will gather researchers of different communities for a better understanding of the evolution and properties of small bodies, in particular the parent bodies of meteorites. It will address recent progresses made on physical and chemical properties of these objects, their interrelations and their evolutionary paths by observational, experimental, and theoretical approaches. We welcome contributions on the studies of the processes on and the evolution of specific parent bodies of meteorites, investigations across the continuum of small bodies, including comets, ranging from local and short-term to global and long-term (thermal and thermochemical) processes, studies of the surface dynamics on small bodies, studies of exogenous and endogenous driving forces of the processes involved, as well as statistical and numerical impact models for small bodies observed closely within recent space missions (e.g., Hayabusa2, New Horizons, OSIRIS-REx).

Convener: Wladimir Neumann | Co-conveners: Marco Delbo, Sabrina Schwinger

Abstract submission

SB3 – Laboratory measurements supporting modelling of early solar system processes and small bodies missions

This session aims to highlight new challenges and the missing building blocks needed to understand the composition and physical properties of the material of primitive bodies, using laboratory work on meteorites or other available extraterrestrial materials as well as terrestrial reference materials (rocks, minerals, ice, organics). Results of these laboratory studies with relevant references to modelling early processes in the solar system, including the formation/evolution of small bodies, and in support of ongoing and planned missions to study these objects are welcome. The session focuses on the origin of inorganic and organic matter in different astrophysical environments and welcomes contributions on laboratory investigations and models of parent bodies of various meteorite groups, IDPs, asteroids, comets and dwarf planets.
This includes experimental work on the composition and physical properties of dust regoliths, the observation and characterization of laboratory analogues and resulting implications for models of small body formation and evolution. In addition, there is a special focus on organic matter (detection and evolution of organic components in the interstellar medium, observation and distribution of organic matter in the protosolar disk, characterization and evolution of organic matter in the primitive bodies and on planetary surfaces).

Convener: Gabriele Arnold | Co-conveners: Jörn Helbert, Eric Quirico

Abstract submission

SB4 – Imagery, photometry and spectroscopy of small bodies and planetary surfaces

Electromagnetic scattering phenomena play a key role in determining the properties of Solar System surfaces based on observations using different techniques and in a variety of wavelengths ranging from the ultraviolet to the radio. This session will promote a general advancement in the exploitation of observational and experimental techniques to characterize radiative transfer in complex particulate media. Abstracts are solicited on progresses in numerical methods to extract relevant information from imagery, photometry and spectroscopy in solid phase, reference laboratory databases, photometric modeling, interpreting features on planetary surfaces, mixing/unmixing methods, software and web service applications.

Convener: Frédéric Schmidt | Co-conveners: Stéphane Erard, Maria Gritsevich, Antti Penttilä

Abstract submission

SB5 – Comets, Trojans, Centaurs, TNOs, & Interstellar Objects

Space and ground based observations of the small body populations in the Solar System are continuously reshaping our understanding of how these objects were formed and evolved. New data and theoretical advances, as well as the discovery of interstellar objects and extrasolar comets give us new insights on the physical and dynamical properties of small bodies. The goal of this session is to highlight recent results from outer planetary system objects (comets, KBOs, Centaurs, interstellar, …) that provide fundamental clues about the early stages of planetary systems. We aim to explore the continuum of small bodies and the overlap between different populations through a balanced set of contributions from ground based observers and space missions (e.g. Rosetta, New Horizons)

Convener: Jean-Baptiste Vincent | Co-conveners: Aurelie Guilbert-Lepoutre, Michael Küppers, Alessandra Migliorini

Abstract submission

SB6 – Asteroid observations and modeling: properties and evolution of individual objects and populations

Currently there are over 1 million asteroids discovered. Each month over 1 mln astrometric and photometric observations are reported to the Minor Planet Center permitting dynamical and physical studies. Owing to large ground- and space-based surveys (such as Gaia, SDSS, ATLAS) hundreds of thousands of bodies can be at least partly physically characterised. Those numerous, sparse and often incidental asteroid observations are balanced by relatively small in numbers but dense, targeted and accurate ground-based measurements. Those allow for a more detailed, tailored analysis, both in terms of observing techniques currently not available in survey mode (e.g. polarimetry, spectroscopy) and time spent on a single object. The aim of this session is to open the discussion about the contribution of traditional vs./and survey-like data to our understanding of the origin and evolution of individual asteroids and populations. Furthermore what do they bring-in in terms of answering the big questions in planetary science such as formation and evolutions of the Solar System, planets and other planetary systems.

Convener: Dagmara Oszkiewicz | Co-conveners: Irina Belskaya, Agnieszka Kryszczyńska, Anna Marciniak

Abstract submission

SB7 – Future missions and instruments for small bodies exploration

Co-organized by MITM

The space exploration of small Solar System bodies has provided major breakthroughs in our understanding of Solar System formation and evolution. Now that the Rosetta comet rendezvous and landing has passed and the Hayabusa 2 and OSIRIS-ReX sample return missions have finished their operations at the target asteroids, it is time to prepare future space mission for small bodies exploration. This session calls for presentations of the upcoming missions by ESA (Hera, Comet Interceptor), NASA (DART, Lucy, Psyche), JAXA (DESTINY+, MMX), and CNSA (name to be determined). Contribution about mission and instrument concepts for the more distant future are invited as well.

Convener: Michael Küppers | Co-conveners: Tomoko Arai, Andy Cheng, Gianrico Filacchione, Harold Levison, Jean-Baptiste Vincent, Xiaojing Zhang

Abstract submission

SB9 – Computational and experimental astrophysics of small bodies and planets

Co-organized by OPS

The goal of this session is to cover numerical simulations and relevant laboratory investigations related to the Small Bodies (comets, KBOs, rings, asteroids, meteorites, dust), their formation and evolution, and the instruments of their exploration. This session is specially focused on the interdisciplinary approach in the development of models (formal descriptions of physical phenomena), experiments (on ground and in micro-gravity), and mathematical simulations (computational methods and algorithms of solution) of various astrophysical phenomena: (i) dusty gas cometary atmospheres; (ii) volcanic activity on icy satellites (e.g. Enceladus and Io); (iii) planetary body formation (e.g. via pebbles growth), and planetesimal dynamics. This session will include an introduction and discussion of new and/or existing laboratory studies in simulated space-like environments and models, experimental techniques, computational methods that can address the results of analytical, experimental and numerical analysis (with respect to computational methods and algorithms of solution) on the above described studies.

Convener: Vladimir Zakharov | Co-conveners: Vincenzo Della Corte, Marco Fulle, Stavro Lambrov Ivanovski, Raphael Marschall, Alessandra Rotundi,Diego Turrini

Abstract submission

SB10 – Planetary Rings – Protoplanetary Disks

Co-organized by OPS/EXO

Thanks to the advancement of observational techniques from Earth and space, our knowledge of planetary ring systems and protoplanetary disks has greatly improved. While these two classes of objects differ by orders of magnitude in dimension and evolutionary stage, they offer a unique opportunity to investigate common dynamical processes that can shed light on the formation, composition and evolution of planetary systems. Although rings are common companions of the outer planets in our solar system, so far we do not yet have firm evidence of similar structures around exoplanets. In this respect, the characteristics of solar system rings can be used as a benchmark to tune ongoing exo-ring surveys. Conversely, high-angular resolution images obtained with new instruments such as the ALMA interferometer and SPHERE on VLT have revealed that protoplanetary discs are also characterized by substructures such as gaps and narrow rings. The formation of these rings can be explained by the dynamical interaction of the gas and dust in the disc with one or more embedded planets. Similar processes are also common in planetary rings, as revealed by the unprecedented spatial resolution of Cassini observations at Saturn. In this session we invite abstracts related to both theoretical and observational studies of planetary rings and protoplanetary disks, as well as exo-ring research.

Convener: Philip D. Nicholson | Co-conveners: Gianrico Filacchione, Linda Podio, Claudia Toci

Abstract submission

SB11 – Observing and modelling meteors in planetary atmospheres

More than 10^7 kg of extraterrestrial objects or meteoroids ranging in size from a few microns to tens of meters in diameter enter the Earth’s atmosphere every year. A small fraction of these yields free samples of extraterrestrial matter – meteorites – for laboratory study. The majority, which burn up or ablate completely in the Earth’s atmosphere, appear as visible meteors in the night sky. Recording meteor activity and modelling the process of ablation allow us to measure directly the flux of small planetary impactors. This provides the ‘ground truth’ for estimating present cratering rates and planetary surface ages by implication. The application of the latest observational and modeling techniques has rendered meteor science as one of the leading avenues for investigating the nature and origin of interplanetary matter and its parent bodies. This session will provide a forum for presenting fundamental results and novel ideas in this area and informing the broader planetary science community of the interdisciplinary impact of present and future work.

Convener: Maria Gritsevich | Co-convener: Eleanor Sansom

Abstract submission

Moreover, we have co-organized the following sessions together with other programs:

TP1 – Planetary Dynamics: Shape, Gravity, Orbit, Tides, and Rotation from Observations and Models

Co-organized by OPS/SB

Shape, gravity field, orbit, tidal deformation, and rotation state are fundamental geodetic parameters of any planetary object. Measurements of these parameters are prerequisites for e.g. spacecraft navigation and mapping from orbit, but also for modelling of the interior and evolution. This session welcomes contributions from all aspects of planetary geodesy, including the relevant theories, observations and models in application to planets, satellites, ring systems, asteroids, and comets.

Convener: Alexander Stark | Co-conveners: Hannah Susorney, Daniel Wahl, Marie Yseboodt

Abstract submission