EPSC2021: Life support cooked up from lunar rocks
September 23, 2021

EPSC2021: Life support cooked up from lunar rocks

Engineers have successfully shown how water and oxygen can be extracted by cooking up lunar soil, in order to support future Moon bases. A laboratory demonstrator, developed by a consortium of the Politecnico Milano, the European Space Agency, the Italian Space Agency and the OHB Group, is presented this week at the Europlanet Science Congress (EPSC) 2021.

The set-up uses a two-step process, well known in industrial chemistry for terrestrial applications, that has been customised to work with a mineral mixture that mimics the lunar soil. Around 50% of lunar soil in all regions of the Moon is made up of silicon or iron oxides, and these in turn are around 26% oxygen. This means that a system that efficiently extracts oxygen from the soil could operate at any landing site or installation on the Moon.

In the experimental set-up, the soil simulant is vaporised in the presence of hydrogen and methane, then “washed” with hydrogen gas. Heated by a furnace to temperatures of around 1000 degrees Celsius, the minerals turn directly from a solid to a gas, missing out a molten phase, which reduces the complexity of the technology needed. Gases produced and residual methane are sent to a catalytic converter and a condenser that separates out water. Oxygen can then be extracted through electrolysis. By-products of methane and hydrogen are recycled in the system.

“Our experiments show that the rig is scalable and can operate in an almost completely self-sustained closed loop, without the need for human intervention and without getting clogged up,” said Prof Michèle Lavagna, of the Politecnico Milano, who led the experiments. 

To accurately understand the process and prepare the technology needed for a flight test, experiments have been carried out to optimise the temperature of the furnace, the length and frequency of the washing phases, the ratio of the mixtures of gases, and the mass of the soil simulant batches. Results show that yield is maximised by processing the soil simulant in small batches, at the highest temperatures possible and using long washing phases.

The solid by-product is rich in silica and metals that can undergo further processing for other resources useful for in-situ exploration of the Moon.

‘The capability of having efficient water and oxygen production facilities on site is fundamental for human exploration and to run high quality science directly on the Moon,’ said Lavagna. ‘These laboratory experiments have deepened our understanding of each step in the process. It is not the end of the story, but it’s very a good starting point.’

Presentation

Lavagna, M., Prinetto, J., Colagrossi, A., Troisi, I., Dottori, A., and lunghi, P.: Water production from lunar regolith through carbothermal reduction modelling through ground experiments, Europlanet Science Congress 2021, online, 13–24 Sep 2021, EPSC2021-527, https://doi.org/10.5194/epsc2021-527, 2021.

Images and animations

Artist impression of a Moon Base concept. Credit: ESA - P. Carril
Artist impression of a Moon Base concept. Credit: ESA – P. Carril

https://www.esa.int/ESA_Multimedia/Images/2019/07/Artist_impression_of_a_Moon_Base_concept

Video showing water extracted from lunar regolith simulant, 2021. Credit: Politecnico Milano. License: CC BY-NC-ND. Credit must be given to the creator. Only noncommercial uses of the work are permitted. No derivatives or adaptations of the work are permitted.

Science Contacts

Michèle Lavagna
Politecnico di Milano
DAER
Italy
michelle.lavagna@polimi.it

Media Contacts

EPSC2021 Press Office
epsc-press@europlanet-society.org

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2021.eu/) formerly the European Planetary Science Congress, is the annual meeting place of the Europlanet Society. With a track record of 15 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2021.

EPSC2021 is sponsored by Space: Science & Technology, a Science Partner Journal.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the European Planetary Science Congress (EPSC).

Новости Омутнинск Любовь и семья Общество Люди и события Красота и здоровье Дети Диета Кулинария Полезные советы Шоу-бизнес Огород Гороскопы Авто Интерьер Домашние животные Технологии Рекорды и антирекорды