A passion for planets outside of academia

A passion for planets outside of academia

The story of a martian geologist – Dr Tanya Harrison

By Hans Huybrighs, Batiste Rousseau, Nandita Kumar, Prasanna Deshapriya, Ottaviano Ruesch, and the EPEC future research working group. With special thanks to Jatan Mehta.

Academia or industry? A question on the mind of many early career researchers.

We spoke with Dr Tanya Harrison, a PhD Mars geologist, who now works as the Director of Strategic Science Initiatives at the NewSpace company Planet. We learned how we can keep our passion for planetary science and stay involved in the field outside of academia, how in industry your personal values also matter, and how important networking can be.

Tanya_Harrison. Credit_T_Harrison
Dr Tanya Harrison. Credit: T Harrison

The difference between industry and academia: a trade-off in values

A move to industry from academia is often seen as a loss of ‘personal values’. We often think that there won’t be as much freedom to pursue our personal topics of interest in industry. How do you see this?

While I would agree that there is indeed less freedom to pursue one’s path in industry, there could be more space for other values. For example, I really value efficiency in getting things done, which is more important in industry than at universities. Also, in industry there is a much stronger link to your individual performance and career progression. In industry you can get promoted much faster and work your way up the ranks much more quickly. Generally speaking, you can make more money way more quickly.

It’s nice to feel compensated and rewarded for what I am so passionate about. That was not always there on the academic side, where it sometimes just feels like a slog where you’re pouring out your heart just to barely scrape by. You could be the most amazing researcher in the world and still not get grant funding just because there’s not enough funding out there.

So is industry better than academia?

I think it’s totally about your personality. I don’t think there’s a right or wrong decision. Either way it’s about where you personally feel the best. The question is: do you want to throw yourself into research and have a lot of flexibility at the cost of slower career advancement and probably lower pay, or do you want to throw yourself into a career to climb the ladder as quickly as possible in exchange for a potentially more stressful work schedule?

Did you have a “culture shock” when you transitioned to industry?

I think the only surprise was how much of my day would be taken up by Zoom meetings! — Even before the pandemic I spent a lot of time on meetings like sales calls. Meetings about annual contract values and license agreements are so foreign compared to what you’re used to in academia. It’s certainly educational but sometimes you think, “How am I supposed to actually get any work done when I spend my whole day on calls that are about the work I should be doing?!” Otherwise, I did not feel there was a huge culture shock even if I might be biased because I worked in industry before.

How did the work mentality change in industry compared to academia?

The mentality of how the work is approached is very different. I work way more hours in the day in my current job than I did as an academic. Academia was not a consistent level of crazy busy all the time, while I feel in my current job it is crazy busy all the time. Some of that is just being in the startup culture. If you are somebody who wants to throw yourself into your work, startup companies can consume your entire life by doing that. That can happen in academia too but there you are generally representing yourself and your work. Being on the industry side, anything I do has my name on it too but instead I’m representing the company. That adds an extra dimension of stress because if I mess up, it could negatively impact the company. I don’t want to lose my job! [laughs]

Long term networking pays off

How do we get hired by the NewSpace industry?

Networking is extremely important, especially at smaller NewSpace companies. They hire people based not only on what’s on their CV but also on how much they like someone as a person and how much they think they will fit in the team. However, I wouldn’t say this is true for large companies like Boeing, Airbus or equivalents. In the NewSpace companies, your reputation with other people in the community is important. You might get hired because someone knows you and recommends you for a job. These companies are so small and so new that they need good people to get off the ground. So these recommendations come with a lot of weight behind them.

How did you start networking with Planet?

The first connection I ever had with Planet was on Twitter, when one of their engineers asked a question about image processing on Mars. Based on my experience working in mission operations, they brought me to Planet to give a colloquium presentation. Later I got accepted into their science ambassadors program, and gave talks at conferences to demonstrate the potential of Planet data. The more I got to know them, the more interested I became in working for Planet.

Over a period of two years my connection with them developed further. I worked hard to get hired. I think that goes a long way with these companies. It helps to show that you care about the company. That way you won’t be just a faceless name on a resume. A lot of these people start these companies because they’re really passionate about it. They’re not necessarily just in it because they’re trying to make a lot of money, but because they want to change the game when it comes to rocketry or Earth observation.

So networking is essential. Where do we get started?

Going to conferences and any type of networking event is really helpful. The International Astronautical Congress (IAC) is an excellent conference to go to for new space networking.

“Change is possible”. A wide variety of career paths are possible after PhD because skills are transferable.

Do you think you will be able to come back to academia or to a faculty position?

I think so. My old boss tried to convince me that if I left academia I could never come back. Maybe 10-15 years ago that might have been the case. However, now people and universities across various domains are appreciating having a broader set of skills like being a better communicator or knowing how to work with more people. Going back is probably not as easy as staying in academia but I think it’s more beneficial in the long run. At least for me, when I went into industry the first time, it gave me a much clearer idea of what I wanted to do for my PhD. After my Master’s, I had no idea of what I wanted to study other than Mars in general. I came back four years later with a clear idea for a project! Working in industry could give you a perspective about how the world works and what you might want from your career.

Tips for transition

How do you transition to a role in industry as a planetary scientist?

It all ties back to knowing how to market the skills that you’ve gained as a planetary scientist in a way that is beneficial to the companies that you’re looking at. Companies aren’t necessarily going to be interested in your knowledge about ice on the moon or the dynamics of asteroids because it doesn’t directly apply to what they’re doing. In general it’s more about the skills that you learned while you were doing research. When you’re making your resume or your CV, it’s good to explain something you did and its result, so they can tangibly see your skills.

Would you recommend to early career scientists who want to switch from academia to industry that a combination of technical and scientific skills is something important to work towards?

Absolutely. If you have skills like analyzing huge datasets or programming that come along with the research you’ve been doing, you can market those and use them to your advantage when applying. It’s a huge thing if you understand the actual technicalities of the things that you’re working with.

You can still be involved in planetary science, but in a different way

We often hear about skills that are transferable to industry, such as data science, But, which jobs are there for planetary scientists coming from academia that are related to planetary science?

That’s tricky if you still want to actually do planetary science. The options are limited but they are growing. I recommend keeping an eye on opportunities at the companies that are going after contracts for NASA’s Artemis and Commercial Lunar Payload Services program or European equivalents. There is not going to be an explosion of these planetary scientists for now but that might change over the course of the next five to ten years.

Blending science and engineering to make space missions possible

Blending science and engineering to make space missions possible

The story of a senior planetary scientist in industry – Dr Beau Bierhaus

By J D Prasanna Deshapriya, Nandita Kumari, Hans Huybrighs, Batiste Rousseau, Ottaviano Ruesch, Carina Heinreichsberger and the EPEC future research working group.

Academia or industry? This is no doubt one of the topics that occupies the minds of early career scientists.

In a quest to gather some insights from someone who has had success in the both, we had a chat with Dr. Beau Bierhaus, who is now a senior research scientist at Lockheed Martin. He started off his career in academia with a planetary science-focused PhD at University of Colorado and later ended up transitioningtransiting to industry, where he works on both engineering and scientific aspects of space missions. Here is what we learned.

Engineering and science backgrounds merge to make a versatile planetary scientist

Beau Bierhaus
Beau Bierhaus. Credit: NASA’s Goddard Space Flight Center

Could you give us a brief introduction about yourself?

I’m a senior research scientist at Lockheed Martin, which is a space company with activities spanning across the United States. I’m located just outside of Denver, Colorado and I work within Commercial Civil Space, which is a smaller part of the larger company. 

What do you do for your job?

I partner with space scientists and instrument providers to put together NASA proposals for new mission concepts, such as Maven and Juno mission proposals. I work with the scientists to transform science goals into specific instrument measurements and mission requirements.  For some missions I have the opportunity to be a member of the science team.

OSIRIS-REx is an example where I was involved from the very beginning with the first proposal. I was a member of the engineering team that put together the design of the spacecraft. I was also a member of the science team, thinking about all of the incredible science that we could do at the asteroid Bennu.

Tell us about your academic background

I was a physics major as an undergraduate and got a wonderful exposure to a broad array of concepts. In terms of graduate school, I went to the University of Colorado in Boulder in the aerospace engineering department. I really liked the school and the organisation of the department, because they had a lot of collaboration with the science departments, for example with the astrophysics and planetary science department. Despite being in the engineering department, I was able to take classes in planetary science and Earth’s atmosphere, among others. 

Then I got lucky. Clark Chapman, co-investigator of the imaging-team for the Galileo Mission, was looking for help on analysis of the image data. Even though I was in the engineering program, I loved the science of the mission. I was interviewed for the position and fortunately got it. I started working at Southwest Research Institute (SwRI) for my graduate research and ended up doing my PhD thesis on impact processes, Galilean satellites and looking at Europa in particular. So I ended up getting a planetary science PhD from the aerospace engineering department. I was a little bit worried that I might not get a good job somewhere because I was from an aerospace engineering department. 

Fortunately, as I was finishing up my career, I met a scientist named Ben Clark with a long background in planetary science and instrumentation. At that time he was working at Lockheed Martin at the facility where I work now. He was looking for somebody comfortable and familiar with both engineering and planetary science. Again I was fortunate that somebody was hiring exactly when I was finishing up my degree, looking for my qualifications. I was very happy to take the job.

A childhood inspiration goes a long way…

You said that you were always interested in space. Was there any defining moment in your life when you decided that you really want to do this ?

Even as a very little kid I just loved space. I can’t pinpoint a particular moment where something happened, but I knew that I wanted to explore space. I’m old enough now that I was alive when the first Star Wars movie came out. I was only four, but I remember seeing the first Star Wars movie and just being amazed. 

Skills? Build your own expertise and also have a sense of the big picture

Could you talk a little about the skills that are necessary for working in industry ?

Engineers have to make things that work in space, with no chance for repair after launch, except for software updates.  This requires incredible attention to detail and a rigorous analysis and test program that evaluates the performance of individual subsystems — such as the power or propulsion subsystems — as well as how those subsystems interact as a system-level spacecraft.  Nothing beats hands-on experience in actually building and testing hardware, even if it’s for something used on Earth, to appreciate the level of detail required.

I would encourage graduate students in science disciplines who are interested in missions, and spacecraft, to learn more about a specific engineering discipline as an entry point to the overall process of designing a spacecraft.  It is also important to keep in mind that your particular subject does not solve the problem alone. Have a sense for community, and work together with people, as all parts of the mission are connected with each other.

I would say in terms of recommendations for interested students, if you’re a scientist, take engineering classes. If you are an engineer, take science classes. At the end of the day these missions are realized not just because of engineers and not just because of scientists but because of both. If you have exposure to those other areas as a student that’s just going to make you a better scientist in the long run, if that is the direction you want to go.

A postdoc looking to transition to industry? Go to conferences, be proactive and make contacts! 

How can a postdoc, beyond taking additional engineering classes, get into industry?

It would be useful to go to conferences where science and engineering overlap because the industry representatives are usually present in such conferences and can be looking to hire. I would encourage you to go to booths of the commercial companies in the conferences and make contacts.

In a nutshell: scientists love ideas, engineers make those ideas work.

You talked about different working philosophies for engineers and scientists. Could you describe it a bit more of how these two sectors approach a problem?

When developing a mission, engineers work, live and design by requirements — that kind of discipline and rigor is necessary to make a mission work. Scientists don’t start out thinking about requirements, they start out thinking about what kind of fundamental questions that they want to answer.  It can take a lot of work to translate the question and hypothesis-based ideas from scientists into mission requirements for the engineers.

Academia vs industry, a choice related to research freedom, teamwork and getting hands-on with stuff that go into space

You transitioned from academia to industry after your PhD. What changes did you notice in the way these two domains work? 

In academia you have the opportunity to come up with your own problems and generally be in charge about what you want to do and what particular problem you want to solve. In industry, your individual efforts are more coordinated with problems that the organization is trying to solve. So I think you trade some intellectual flexibility by working for a company, but you have direct access, responsibility and involvement with actually building satellites that will go into space. 

Fancy being a scientist in industry? The more ‘bilingual’ you are in science and engineering, the better the chances!

Could you reflect on future opportunities for scientists in industry in the next decade or so?

There needs to be a bridge that connects those two to make the missions work. I think it’s always important to have people who are comfortable speaking to both communities, probably because of the different working mindsets of engineers and scientists. So I think if you are interested in industry, I think that interface is really valuable and makes a mission successful.

Find out more about the EPEC future research working group.