20-EPN2-070: Formation of Glycine and Alanine Upon Ion Irradiation of Space-Relevant Ices
Visit by Alejandra Traspas Muina, Queen Mary University of London (UK), to TA2.11 Atomki Ice Chamber for Astrophysics / Astrochemistry (ICA) (Hungary).
Dates of visit: 20 March – 2 April 2023
Report Summary: The experiments initially proposed aimed to investigate the formation and chemical evolution of both glycine and alanine under space relevant conditions. Following a systematic approach, the TA was divided into three projects carried out by a multidisciplinary group of scientist (chemists, biologists, astrophysicists and engineers): looking at (i) experimental insights into the microphysics of molecule destruction and sputtering of CO2 exposed to cosmic rays analogues; (ii) the formation of methyl formate and its isomers (glycolaldehyde and acetic acid) through the systematic irradiation of H2 CO:CO, H2 CO:CH4 , and H2 CO:CH3 OH ice mixtures with 1 MeV and 200 keV H+ ; (iii) and 1 MeV H+ irradiation of pure Glycine and Glycine:CH4 interstellar relevant ice mixtures, exploring the survivability and stability of this amino acid in astrophysical relevant environments.
The three projects were designed with incremental molecular complexity to investigate the chemistry of many precursors of simple amino acids. Moreover, the sub-projects were designed to be connected to other awarded TAs either at ICA or AQUILA (PIs: Ivlev, Ioppolo, and Hopkinson) in a synergic manner. For instance, the work of H2 CO completes the systematic study on methyl formate and its isomers, started at this Europlanet facility 2 years ago, trying to improve the understanding of the standing dichotomy on the formation of glycolaldehyde, methyl formate, and acetic acid. All these species are detected in space in star-forming regions and are considered prebiotic molecules.
Full scientific report published by kind permission of Alejandra Traspas Muina