20-EPN2-066: From Geitafell Volcano (Iceland) to Mars

20-EPN2-066: From Geitafell volcano (Iceland) to Mars: How hydrothermal alteration of basalt can guide our understanding of habitable environments on Mars

Visit by Julia Semprich and Geoff Austin, Open University (UK), to TA1 – Iceland Field Sites, MATIS
Dates of visit: 21 September – 01 October 2022

Hydrothermal systems provide conditions and nutrients for microbial life and thus have the potential to create subsurface habitats on Mars. Characteristic minerals associated with these hydrothermal systems have been detected on Mars’ surface by spectral observations from orbit, but their formation conditions and spatial distribution remain unknown. The aim of this study was a detailed characterisation of the spatial distribution and mineral chemistry of the low-grade metamorphic/hydrothermal alteration mineralogy in an extinct hydrothermal system.

Field work was conducted at the Geitafell central volcano near Hoffell in the south-eastern part of Iceland, an ideal analogue for Mars. The focus of this research was to record spatial relationships between the basaltic host rocks and the hydrothermal alteration in the field and to sample characteristic low-grade metamorphic minerals, which have also been detected on Mars.

We collected 19 samples from different alteration zones within the hydrothermal system including veins and vesicular basalt showing a range of alteration minerals such as carbonates, quartz, zeolites, chlorite, prehnite, epidote, andradite, and actinolite. We will now be able to conduct a detailed study of the samples including petrography, mineral chemistry, and spectroscopy, which can then be used to further constrain our models of hydrothermal alteration on Mars.

We expect this research to be highly relevant to the study of hydrothermal systems on Mars and particularly for sample return once the Perseverance Rover reaches the rim of Jezero Crater, which likely exposed hydrothermally altered rocks.

Banner image: View towards Hoffellsjökull glacier. CC BY-SA 3.0 (Gummao)


20-EPN2-105: Uncrewed Aerial System (UAS) and LiDAR Survey of Relict and Active Periglacial Patterned Ground as Analogues for Mars

20-EPN2-105: Uncrewed Aerial System (UAS) and LiDAR Survey of Relict and Active Periglacial Patterned Ground as Analogues for Mars

Visit by Paul Knightly, Northern Arizona University (USA), and Shannon Hibbard, JPL (USA), to TA1 – Iceland Field Sites, MATIS
Dates of visit: 22-31 August 2022

Uncrewed aerial system (UAS) and LiDAR surveys were performed at periglacial patterned ground sites, including polygons terrain and stone circles, in the Westfjords and Central Highlands, Iceland during the 2022 site field season. Shallow trenches (up to 1 m depth) were excavated to gather in­situ measurements and observations to determine the presence or absence of permafrost and substrate characteristics. No permafrost was observed at either site suggesting the features may be periglacially relict. The processed UAS and LiDAR data will be used to perform morphometric evaluations of patterned ground at each site and compared to previously collected and analyzed morphometric evaluations of periglacially active patterned ground in the Canadian Arctic. The objective of this work is to develop a set of morphometric criteria for distinguishing between active and relict patterned ground. The developed criteria may help inform on the current level (or absence of) periglacial activity and ice content of patterned ground on Mars.

Read the full scientific report, with kind permission from Paul Knightly.


20-EPN2-099: Bioaerosol generation at geothermal systems: Implications for the detection of biosignatures in cryovolcanic plumes at the ocean worlds

20-EPN2-099: Bioaerosol generation at geothermal systems: Implications for the detection of biosignatures in cryovolcanic plumes at the ocean worlds

Visit by Mark Fox-Powell and Claire Batty, Open University (UK) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 27 July – 09 August 2022

The aim of our project was to capture and study microscopic aerosols ejected from bubbling or geysering geothermal springs in Iceland. Our primary motivation was to understand the potential for biosignatures to become entrained within cryovolcanic plumes at icy moons, such as Saturn’s moon Enceladus, where similar bubbling of hydrothermal gases is thought to drive the formation of aerosols that are then accelerated into space. Fieldwork was conducted at geothermal systems in Iceland in July and August 2022 by a team from the Open University (UK).

We focused our aerosol sampling efforts on two locations that exhibit contrasting aerosolisation regimes: Olkelduhals hot springs, Hverageroi, which exhibit constant, moderate bubbling of geothermal gases, and Strokkur, Geysir, which experiences regular energetic geyser eruptions. Our aerosol flux monitoring showed that geothermal springs are prolific local sources of aerosols, producing fluxes orders of magnitude above background levels. We also found that aerosol production is tightly controlled by bubbling and/or eruption activity.

Successful replicate sample sets were taken at upwind locations to characterise the background aerosol environment, and at multiple downwind locations to capture geothermal aerosols. We also took samples of spring fluids, as the assumed local aerosol sources, and geothermal gases, which are responsible for driving bubbling activity. Ongoing work is investigating the chemical composition, biomass content and microbial diversity of aerosols, and the volatile profiles of geothermal gases. Our data will provide the first insights from natural analogues into the formation of aerosols within cryovolcanic plumes.

Read the full scientific report, with kind permission from Mark Fox-Powell.


20-EPN2-120: A Molecular Toolkit to Hunt and Resolve Dark Fungal Matter (DFM) in Extreme Planetary Environments

20-EPN2-120: A Molecular Toolkit to Hunt and Resolve Fungal Dark Matter (FDM) in Extreme Planetary Environments

Visit by Ali Nawaz and Christian Wurzbacher, Technical University of Munich (Germany) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 19 – 23 July 2022

Fungi are amazing but largely enigmatic creatures with huge diversity and biological potential in any conceivable ecosystem known so far. This holds for our planet, but this also seems true for outer space and other planetary bodies. However, we do not know what kind of extremophile fungi are or have been growing on other planets.

To have a clue, we need to explore extreme analogue sites on our planet using novel and advanced methods. Therefore, we here propose to collect and study samples from various extreme habitats of Iceland using a unique combination of Laser-microdissection of single cells and long-read sequencing to fully resolve the Fungal Dark Matter of Mars-analogue extreme sites in Iceland.

We believe that the outputs of this project will bring novel fungal species into scientific arena and the findings of this proposal will help the broader general scientific community dealing with AstroMycology in specific, and Astrobiology in general, to rightly speculate on the capabilities and limitations of microbial life in extreme environments and correlate it with the conditions of other planets.

Read the full scientific report, with kind permission from Ali Nawaz.


20-EPN-003: Production and Early Preservation of Biosignatures in Glaciovolcanic Lakes

20-EPN-003: Production and Early Preservation of Biosignatures in Glaciovolcanic Lakes: A Biogeochemical Analogue for Mars

Visit by Erin Gibbons and Richard Leveille, McGill University (Canada) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 28 May – 08 June 2022

The search for extraterrestrial life, either extinct or extant, on Mars is a key objective for several international space exploration programmes. To maximise the likelihood of success for these programmes, we must first study ecosystems on Earth that resemble those on Mars and investigate both the kinds of organisms that can survive there and the processes that control their ultimate preservation/fossilisation in the rock record.

We proposed that the geothermally-heated lake Gengissig, located in the Highlands of Iceland, represented an ideal natural laboratory within which to conduct a Mars-centric taphonomic study. Geologically, this setting provides an excellent analogue for Mars because the basaltic bedrock has a bulk chemical composition that is similar to the rocks measured on Mars by past and current rovers, thereby allowing us to study how signs of life may be preserved by the rock types common on Mars. Furthermore, this remote location is nearly devoid of multicellular life-forms and is isolated from anthropogenic input, providing a pristine ecosystem to study the fossilisation processes expected to be encountered on Mars – those operating on microbial life. 

We collected water, rock, and lake sediment samples to investigate the site. We intentwill use a combined genomic, stable isotope, and geochemical approach to investigate the indigenous microbial communities and their ultimate fossilisation in this Mars-like terrain.  the results of which will be immediately relevant towards directing current and upcoming Mars rovers towards sites on Mars most likely to retain signs of ancient extraterrestrial life.

Read the full scientific report, with kind permission from Erin Gibbons.


20-EPN2-122: IceSCOPE – Iceland Subsurface Classification of Organics, PAHs, and Elements

20-EPN2-122: IceSCOPE – Iceland Subsurface Classification of Organics, PAHs, and Elements

Visit by Pablo Sobron and Kirby Simon, Impossible Sensing (US) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 15-18 May 2022

The recent volcanic eruption at Geldingadalir in 2021 serves as an ideal analog for studying the biogeochemistry of volcanism on other planetary bodies with active (e.g. Io) and/or extinct (e.g. Mars) volcanic systems. Along with this, comparative analog studies between a recently-active volcano like Geldingadalir and old lava fields present throughout Iceland will provide meaningful context in understanding (1) the conditions necessary for microorganisms to colonise lifeless or barren environments and (2) how life transforms the environment, which has implications in the search for extant or extinct life in our solar system.

Our technology demonstration focused on the deployment of ruggedised, handheld spectroscopic tools for surveying the biology and chemistry present in the lava fields. We deployed a gamma ray spectrometer and laser induced breakdown spectroscopy (LIBS) instrument to assess the elemental composition of the natural samples, an ultraviolet (UV) fluorescence imager to investigate organic signatures on the rock surfaces, and a near-infrared (NIR) reflectance spectrometer for determining mineralogy and molecular bonding structures.

We collected co-registered spectroscopic measurements on >5 samples throughout the Geldingadalir lava field and at a control field nearby, and surveyed >10 additional surface and subsurface features throughout the lava field with one or more of the instruments. At the conclusion of the work, we had collected >1000 UV fluorescence images, 10s of NIR reflectance and LIBS spectra, and >10 gamma ray measurements.

Suite of spectroscopic instruments deployed in the Geldingadalir lava field. Instruments include a UV fluorescence imager for investigating organic compounds and biological species (a), a NIR reflectance spectrometer for investigating mineralogy and molecular bonding (b), and a LIBS probe (c) and gamma ray spectrometer (d) for analysing the elemental composition of samples. Credit: P Sobron

Highlights of the project: Demonstration of a scientific payload for astrobiological research in volcanic environments and new understanding of microbial colonisation of fresh basalt.

Read the full scientifc report, with kind permission from Pablo Sobron and Kirby Simon.


20-EPN-017: LITRASV – Life in TRAvertine-Sinter Veins

20-EPN-017: LITRASV – Life in TRAvertine-Sinter Veins: a possible key to recognize extra-terrestrial life in tectonically-driven depositional systems.

Visit by Enrico Capezzuoli, University of Florence and Andrea Brogi, University of Bari (Italy) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 04-10 July 2021

Report Summary: Detailed study of travertine and sinter depositional systems and related feeder conduits (veins) in cold desertic setting (Lýsuhóll and Hveravellir sites- Iceland), as possible repository of subsurface life to be observed in extra-terrestrial setting. The performed field activity allows reconstruction of the structural control in these sinter/travertine depositional systems, with stratigraphic-sedimentological characterisation of the travertine-sinter lithofacies. 16 travertine/sinter samples were collected from the two sites, together with the basic physical characterization of the thermal springs (T, pH, Cond). Due to the local conditions, all the collected samples derive from fossil/inactive systems (veins and crusts samples). Among these, one sample derives from a sinter vein recognized in the Lýsuhóll site, while all other derive from fossil vents or close surroundings.

Samples returned to Italy for future petrographic and geochemical characterization in order to detect and define possible organic presence in such an extreme environment.

Read full report.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

Новости Омутнинск Любовь и семья Общество Люди и события Красота и здоровье Дети Диета Кулинария Полезные советы Шоу-бизнес Огород Гороскопы Авто Интерьер Домашние животные Технологии Рекорды и антирекорды