Announcing the Contenders for the #PlanetaryScience4All Video Contest 2021

Announcing the Contenders for the #PlanetaryScience4All Video Contest 2021

Earlier this year, the Europlanet Early Career (EPEC) Communication working group invited all early career researchers, including PhD, Master’s and Bachelor’s students, involved in planetary science the opportunity to showcase their research through a 4-minute video contest called #PlanetaryScience4All.

Watch the 2021 Contenders’ Entries

The winner is….

The winner of the 2nd edition of the #PlanetaryScience4All EPEC-EPSC Video Contest will be announced during the EPSC2021 session CE10 – Other Prize Lectures, at 14:20–14:50 (CEST) on Friday 24 September.

The Judging Committee for the second edition of the #PlanetaryScience4all includes eight members of the current EPEC Communications Working Group.  All members have been involved in planetary science research projects as well as several outreach activities. The group is made by people of different nationalities currently working for different institutions and universities.

The group is voting using  a Google form where is not possible to see scores assigned by the other judges. Videos are going to be evaluated according to the following criteria: Scientific content, Structure Presentation delivery Layout, and Visual quality. The scores have been given based on a scale from 0 to 5. The video with the highest score will be considered the winner of the competition.  

The winner of the video contest will receive free registration to EPSC 2022 which will be held in Granada, Spain. 

Help spread the word on social media #PlanetaryScience4All #PS4All #EPSC2021 and join us on Friday 24 September to find out if your favourite entry has won!

Outreach at EPSC2021

Outreach at EPSC2021

EPSC2021 has put together an active programme of outreach activities to share the fascination and inspiration of planetary science with people around the world and to build links with new communities.

EPSC2021 Goes Live for Schools

Once again, the Europlanet Science Congress (EPSC) will be opening its doors to schools and giving students a glimpse of how contemporary science is done.

Teachers and students are kindly invited to join us virtually with their classroom or educational institute  (suggested age range 12-18 years old or older).

Find out more about EPSC Goes Live for Schools 2021

EPSC2021 Planetary Science Wiki Edit-a-thon

Wiki-edit-a-thon EPSC2021 advertisement

The Diversity Committee of the Europlanet Society, in collaboration with Women in Red and WikiDonne, are organising an Edit-a-thon during EPSC2021 to highlight diversity within the planetary science community.

Following on from the successful Edit-a-thon at EPSC2020 and ongoing monthly meetings, EPSC2021 will be an opportunity to expand the group and develop more new profiles and translations.

Join the intro event on Friday 17th September at 5:30pm.

Find out more about the Wiki Edit-a-thon

International Observe the Moon Night

EPSC2021 is teaming up with International Observe the Moon Night to encourage everyone to connect with lunar enthusiasts around the world and see how Moon changes during the month between EPSC in mid-September and International Observe the Moon Night on 16 October.

More details coming soon!

#InspiredByOtherWorlds arts contest

The Europlanet Society Congress (EPSC) 2021 is inviting schools  and space enthusiasts of all ages to get creative and share their artworks and performances inspired by other worlds in a contest called #InspiredByOtherWorlds.

The theme this year is ‘Ingenuity’. Let your imagination take us on a voyage through our Solar System and planets around distant stars! Show us how you have been inspired to create drawings, storytelling, pictures, videos, models, craft works or art installations at home. 

Find out more about #InspiredByOtherWorlds

#PlanetaryScience4All video contest

The Europlanet Early Career (EPEC) Communication working group is giving doctoral candidates, Bachelor’s and Master’s students involved in planetary science the opportunity to showcase their research through a 4-minute video contest called #PlanetaryScience4All.

Videos will be shown during a dedicated session during the Europlanet Science Congress (EPSC) 2021. The winner of the competion will receive a free registration for EPSC2022 in Granada,

Find out more about #PlanetaryScienceForAll

Inspiring Stories – #PlanetaryScience4All: A Video Contest for Virtual Science Communication

Inspiring Stories – #PlanetaryScience4All: A Video Contest for Virtual Science Communication

In this EPEC Inspiring Outreach Story, Melissa Mirino (doctoral candidate at The Open University and of the Chair EPEC Communications Working Group) shares how the extraordinary experiences of 2020 inspired her to launch a contest to bring together the early career community. This story is an extract from the first Issue of the Europlanet magazine.

The year 2020 will be always remembered as a year of isolation, disruption of the normal daily activities, and in extreme cases a year of loss. However, during this period we all did our best to find alternative solutions to carry on with our lives, jobs and activities and remain positive and connected with each other using the current available technologies. Research and academia have not been an exception. Both the Europlanet Society and the Europlanet Early Career Network (EPEC) did their best to remain active, and to guarantee the usual sharing of ideas and scientific results by transforming the EPSC 2020 Conference into a virtual meeting. 

As Chair of the EPEC Communications Working Group, I wanted to create an activity that could combine the EPEC goal of supporting early careers, our working group’s aim of communication, and the need to transform face-to-face activities into a shareable, interactive and online form to support the EPSC2020 virtual meeting. The idea of a video contest came to mind. This format is already considered by many universities as a good way to train and challenge students in science communication. Since the main subject of EPSC is planetary science, the topic of the video contest was easy to identify. With support from the EPSC2020 Outreach and Europlanet Communications teams, and many months of planning, creating and sharing the new activity, the #PlanetaryScience4All video contest became a reality. #PlanetaryScience4All challenges early career students to present their research in four minutes to a non-expert audience. 

The first edition (2020) of the contest was open to Ph.D. candidates involved in planetary science studies, asking them to explain their Ph.D. research using any type of creative video format (Lego movies, drawing, PowerPoint, storytelling, etc.). The videos were judged based on criteria of scientific content, communication skills, and creativity by a panel of experts from the Europlanet Community. All the contestants and their videos were featured in live sessions during EPSC2020, promoted on YouTube, and shared widely on social media. The winning video was highlighted through the Europlanet website and newsletters, and it has also been used for EPEC outreach activities. The winner of the 2020 edition, Grace Richards, received free registration to this year’s EPSC2021 meeting. Recently, Grace and Gloria Tognon, another contestant, have also joined the EPEC Communications Working Group to support our activities. Based on the success of the 2020 competition, I feel confident that #PlanetaryScience4All will become a traditional part of EPSC. 

The second edition is now open, this year welcoming Bachelor’s and Master’s students, as well as PhD candidates working on a thesis related to planetary science.

For more information FAQs, flyers, and the submission form visit: https://www.europlanet-society.org/early-careers-network/epec-communications-group/planetaryscience4all-video-contest/

Videos from the 2020 #PlanetaryScience4All contest can be found at: https://www.youtube.com/ playlist?list=PLPXeplhp1d00fmFd9vYXirNt_gyZrKOPA. The first Europlanet Magazine issue is available at: https://www.europlanet-society.org/europlanet-magazine/issue-1/?fbclid=IwAR38hwgnbbP6Y3Vn6RdQZNOZ_OPQhsFQuuvEGY5VhP4vUnebRRH_u9IJniQ#dearflip-df_16450/42/

Calls for Europlanet Outreach Funding Scheme and Prize 2021

Calls for Europlanet Outreach Funding Scheme and Prize 2021

Are you looking for funding to kickstart an outreach or education project related to planetary science? Or have you run a successful public engagement project for which you deserve some recognition?

The Calls are now open for applications for the Europlanet Outreach Funding Scheme 2021 and nominations for the Europlanet Prize for Public Engagement 2021.

**Deadline for submissions is 18 August 2021**

About the Europlanet Outreach Funding Scheme 2021

Europlanet awards grants of between 1 000 and 5 000 Euros to fund projects to engage the public with planetary science. Through the funding scheme, Europlanet aims to encourage new ways of sharing planetary science with different kinds of audiences across Europe (and beyond) to create socially impactful initiatives that combine research, learning, innovation and social development.

Find out more at: https://www.europlanet-society.org/outreach/funding-scheme/applications-2021/

About the Europlanet Prize For Public Engagement 2021

The Europlanet Prize for Public Engagement recognises achievements in engaging citizens with planetary science. The Prize of 1 500 Euros is awarded annually to individuals or groups who have developed innovative and socially impactful practices in planetary science communication and education.

The winner will be honoured at the Europlanet Science Congress (EPSC) 2021 and will be invited to share experiences and best practice by delivering an online prize lecture during a ceremony, which will provisionally take place on Friday 24 September from 14:20-14:50 CEST. If the winner is unable to present during this live session, they will have the option to pre-record a lecture.

Find out more at: https://www.europlanet-society.org/prize/nominations-2021/

Inspiring Stories – Roving with Rosalind

Inspiring Stories – Roving with Rosalind

In this EPEC Inspiring Outreach Story, Sara Motaghian, a doctoral student at the Natural History Museum (London), tells us about her experience organising ‘Roving with Rosalind’ for classrooms across the UK.

Roving with Rosalind is a series of curriculum-based activities which give students the opportunity to overcome challenges and solve problems based on the ExoMars mission. We have created 5 large practical kits to be housed at STEM hubs across the UK filled with engaging workshops and activities linked to space science. 

We applied to the UK Space Agencies Aurora Outreach funding in the summer of 2019 to make the Roving with Rosalind project a reality and were ecstatic to be awarded the funding at the end of that year. The project aims to reach to 7000 students across the UK in total during its primary funding period. At the end of the project’s nominal funding timeline, the kits and resources will be hosted indefinitely by STEM Learning ensuring the kits can be collected and used well beyond the first 7000 students. 

In total, 20 educational, curricula-mapped resources have been created to accompany the practical kits. The project funds the postage of the kits to schools in order to remove funding and geographical barriers to participation in STEM initiatives, improving opportunity and equity in STEM learning. This model helps us to reach schools and students that are geographically distant from science centres, universities and museums, and schools that don’t have the funding to engage with other initiatives. 

Roving with Rosalind breakdown

The main activity categories are: 

  1. Landing site selection, geology and remote sensing
  2. Rover and mission design
  3. Instrument design and building
  4. Analogue missions (the most fun!)
  5. Sample analysis
  6. Learn to code in Python
Romanby Primary School building programmable rovers to explore the Maps of Mars – our pilot school!

The main activity is the analogue missions where students explore a map of the ExoMars landing site, in one of three ways, to search for points of interest and data to analyse. First, students can walk around the map as the rover, communicating with their team as mission control. Secondly, they can utilise remote-control rovers with video feedback to simulate the difficulty in controlling a rover from afar. Or thirdly, they can build and program the included rovers to execute a path across the map. For every point of interest students locate they receive a data downlink from Mars to analyse!

Spectroscope the students build as part of the designing instruments activity and the solar spectrum you can see with them. 

We were really lucky to be able to launch Roving with Rosalind during National Astronomy Week and deliver a rover design and building workshop to over 200 school classes and ~5000 students! We have been able to send our kits to three classes so far, restricted due to COVID, and 100 students to date. We have been able to partner with several STEM equity programmes, like In2Science and Girls into Geoscience, to deliver out Python programming workshops to over 300 upper secondary students with amazing success, and the program has already received some great feedback:

“[It] has been one great interesting and informative experience. I enjoyed everything … provided for the participants. One particular event: I had never done coding before. It was a bit challenging since I had no idea where to begin but the mentors made it so easy to grasp. I’m very excited, it’s something I’ve always wanted to do, and I will definitely do it as an extracurricular activity in my free time. There were a lot of courses. I was clear about what I wanted to do, but the courses gave me a lot more information about the university and beyond. I want to study physics so I’m looking forward to University and onwards.”

As well as reaching students, the Roving with Rosalind programme also aims to improve teacher confidence in the delivery of STEM resources and has provided training to over 50 teachers, technicians, STEM ambassadors and lecturers. The Roving with Rosalind framework is also now being used as a basis for a Europe-wide outreach project run by the ESA Robotics Working Group. 

Example Downlink Target

Do you like this story and want more? Browse our archive of EPEC Inspiring Stories and get inspired!

SuperLuna! Challenge: And the Winner is…

SuperLuna! Challenge: And the Winner is…

The ‘supermoon’ on 26th May was the closest Full Moon of this year. To mark the occasion, Edu INAF and Europlanet challenged the public to observe and portray our satellite. Participants in the SuperLuna Challenge were given free range to use their creativity to represent the Moon in its different phases through photos, videos, drawings.

Federica Duras of INAF says, “In fact, the over 40 works submitted, together with those collected through social media, give a multifaceted portrait of the Moon, many of which were shown during the live event in May of “Il cielo in salotto”. We’ve seen the Moon peeping shyly out from the dark foliage of the trees of Wales, soaring scarlet above the towers of a medieval castle in the Roman skies, or sleeping under the wing of Venus in a colorful Virginia sunset. Thank you to all participants for having been able to respond to such a challenging test combining science and art and encouraged us to keep our noses up, to admire, once again, the many faces of the Queen of the Night.”

The winning image comes from Vicenza, Italy, from the balcony of Roberto Vaccaro’s home.

April 2021 Superluna. Credit: Roberto Vaccaro
April 2021 Superluna. Credit: Roberto Vaccaro

Four works also deserve a special mention:

The work of the students of the school Fabio Filzi (Laives, Italy) who, with the guidance of their teachers, took a beautiful photo emphasising the lunar seas and craters.

The stunning and extremely realistic Moon in black and white pencil sketch by Mary McIntyre:

Moon Phase Diagram - in Pastel Sketches by Mary McIntyre

This drawing by William is made up in red, yellow and bright as the Sun. (SuperBright Moon. Credit: William Rizzi).

LUNA SUPERLUMINOSA ( SuperBright Moon). Credit: WILLIAM RIZZI

The Supermoon drawn by Elisa and her little brother Francesco has a Supersister with whom to play at piercing the darkness. (Super Luna con mantello e Superluna in compagnia. Credit: Elisa e Francesco Oliverio).

Luca Nardi Interviewed Roberto Vaccaro about how he achieved his winning photo:

Roberto Vacarro, winner of the SuperLuna Challenge
Roberto Vacarro, winner of the SuperLuna Challenge

Roberto Vaccaro, congratulations on your amazing photograph of the Moon. Where did you take it from?

Thank you very much, the news of the prize was really a surprise! I took this photo from the terrace of my house: fortunately in order to shoot the Moon, especially when it is so bright, there is no need to move to isolated locations in search of dark skies.

And what instruments did you use?

I used a Newtonian telescope with 130mm aperture and 900mm focal length. I then connected a direct-focus mirrorless camera, so that the telescope acted as a lens for the camera itself. For the image I used the high-resolution method (which is used to shoot celestial bodies such as the Moon and planets) creating a video in 4K, from which I then extracted the individual frames. Next, I overlapped them with a processing program to eliminate noise and the distortions due to atmospheric turbulence: so I got the final image!

Was it more or less difficult to take a picture of the Supermoon compared to a normal Full Moon?

It is not more difficult, because the Full Moon is always extremely bright. However, for this reason a little care is needed because there is the risk of overexposing the photo (making it too bright), thus reducing the contrast effect of the lunar seas (which are the darkest regions of the Moon) and the details of the craters.

How was your passion for astrophotography born?

I have always been fascinated by astronomy and observations with a telescope, but my passion for astrophotography was born because I wanted to see celestial objects (such as nebulae and galaxies) that cannot be seen with a simple observation with the naked eye since they are too dim. They can reveal all their beauty thanks to a telescope, a camera and sufficiently long exposure time.

See Italian article on Edu INAF

We just launched the Europlanet Magazine!

We just launched the Europlanet Magazine!

The official magazine of Europlanet, the European community for planetary science.

We are delighted to share with you the first issue of the Europlanet Magazine. The e-magazine will be published twice a year and aims to highlight the range of activities by Europlanet, our partners, and the wider planetary community.

This first issue has a strong focus on Mars, including European contributions to current missions, experimental research in labs and in the field, and outreach initiatives to engage the next generation. We look back at the origins of Europlanet and its links to the Cassini-Huygens mission at the beginning of this century. We also have updates on the Winchcombe meteorite and on several new partnerships to support planetary science.

Please check out Issue 1 and share with your networks to help us spread the word.

In this issue:

In Focus

round up of news from Europlanet 2024 RI, the Europlanet Society, the Regional Hubs and Committees, and the Europlanet Science Congress (EPSC) 2021.

Memories of Europlanet’s birth

Michel Blanc (IRAP), coordinator of the first Europlanet projects, looks back on the origins and evolution of Europlanet

Planetary Perspectives

Q&A with Henrik Hargitai, Editor of the Pocket Atlas of Mars 36

Europlanet Society Joins International Planetary Data Alliance

Stéphane Erard (Observatoire de Paris) reports on Europlanet’s participation in international consortia that manage access to planetary data.

Searching for Answers to Life’s Big Questions

Fernando J Gomez and Mateo Martini (CICTERRA-CONICET) introduce the new Europlanet 2024 RI planetary analogue field site in Argentina

RoadMap to Understanding Atmospheric Dust on Mars

Ann Carine Vandaele (BIRA-IASB) addresses open questions about dust and clouds in the martian atmosphere through the H2020 RoadMap project

All Eyes on Mars

A round up by the editor on European involvement in Mars missions and lab-based research on Mars exploration, including the MEDA, SuperCam and MOXIE instruments on Perseverance and spiders on Mars.

My Journey to Mars by Maria Hieta (FMI), a personal viewpoint on working on Perseverance’s MEDA instrument and ExoMars,

The Fall of the Winchcombe Meteorite

Sara Russell (NHM) describes the first UK meteorite fall recovery in thirty years and the most exciting week of her life.

Building a Community for Planetary Geological Mapping

Angelo Pio Rossi (Jacobs University) describes Europlanet’s new geological mapping activity, GMAP

Mobilising Planetary Science in Africa

Fulvio Franchi (Botswana International University of Science and Technology) introduces a new network to support planetary science in Africa.

Industry Engagement

Marcell Tessenyi (Blue Skies Space Ltd) and Jeronimo Bernard-Salas (ACRI-ST) discuss the mutual benefits for industry and academia in developing collaborations.

CommKit

The Europlanet Magazine’s column on science communication by Shorouk Elkobros (Europlanet Society/ESF).

EPEC Corner

News from the Europlanet Early Career (EPEC) Network

Melissa Mirino  (EPEC Communications Working Group) on how EPEC can support early career professionals, and the 2021 edition of the #PlanetaryScience4All video contest

3rd EPEC Annual Week
Erica Luzzi on the EPEC Annual Week, held as a virtual meeting this week

The Last Word

Nigel Mason on Europlanet: Moving Forward Together

Commkit


Commkit

Europlanet Magazine - Issue 1

Shorouk Elkobros is Europlanet Magazine’s columnist on science communication topics and tools.

Read article in the fully formatted PDF of the Europlanet Magazine.

Since the pandemic started, I expected social distancing to feel, well, distant. But I have found that regardless of isolating in my home office, I’ve been more connected than ever. In this issue’s column I would like to share some of the useful tools I have used over the past year that have allowed me to facilitate workshops and embrace the new norm of remote working.

The Europlanet media team, of which I’m part, has recently organised a workshop in collaboration with the European Science Foundation on common challenges and actions for distributed research infrastructures in Europe. We had more than 130 registered participants from 23 countries within the EU and beyond. To make sure we fostered interesting outputs we used a Mural board, a digital workspace for visual collaboration to help participants brainstorm ideas. During the workshop, people collaboratively added and edited ideas live. After the workshop, we assessed the value of the Mural board for efficiency, time management and creativity. The results were great! Similar online platforms are a game-changer not only for organising events but also for meetings, voting processes, etc. 

You might wonder, if sessions are disseminated via platforms like Zoom and workshops are organised using visual collaboration tools such as the Mural board, how can we incorporate networking? 

Europlanet joined Slack, a networking platform to formally and informally chat with colleagues. Slack is a great communication tool for communities and a perfect complement to emails. It simplifies communication between different teams, committees and working groups, and thus increases collaboration and productivity. Once workshops are done, Slack provides a space to continue the conversation and keep the collaboration alive. 

We are on the brink of what Ezra Klein calls a ‘social recession’. Using virtual platforms that can boost effective communication is thus crucial to maintain an active work culture. At Europlanet, we aspire to use digital tools that help us create connections on virtual meetings and allow us to come up with collective solutions. We want to question strategically how to have a healthy and robust version of digital culture. Yes, we are losing physical proximity, but we should stay positive and always think of new ways to revolutionise our digital spaces.

Planetary yours,

Shorouk Elkobros, Commkit Columnist

Shorouk

Mural: mural.co

Slack: europlanetsociety.slack.com

Issue 1 of Europlanet Magazine

The Fall of the Winchcombe Meteorite


The Fall of the Winchcombe Meteorite

Europlanet Magazine - Issue 1

Sara Russell (Natural History Museum, London) describes the first UK meteorite fall recovery in thirty years. 

Read article in the fully formatted PDF of the Europlanet Magazine.

 On the evening of 28th February 2021, a bright fireball blazed across the skies over much of England and Wales. As well as being observed by sharp-eyed members of the public, the meteor was also recorded by camera networks specially set up to capture such events, including the French FRIPON network and a consortium of UK networks coordinated by UKFAll. The members of the camera network teams worked hard over the next few days to calculate that the fireball probably resulted in a meteorite fall in the area around Cheltenham in the west of England. 

Colleagues at Curtin University in Western Australia used the data to show that the object originated in the outer asteroid belt, near the orbit of Jupiter. 

The morning after the fireball, a family from the Cotswolds town of Winchcombe, near Cheltenham, woke up to find what looked like a pile of barbecue coal on their driveway. Realising that it could only be a meteorite, they carefully collected all the material into clean plastic food bags and got in touch with the Natural History Museum in London. Soon after, Richard Greenwood from the Open University visited the family to verify the meteorite, followed by Ashley King from the Natural History Museum. Immediately, they knew that this remarkable discovery was a carbonaceous chondrite, an exceptionally rare but scientifically valuable type of meteorite. 

The landing site of a fragment of the Winchcombe Meteorite.
The landing site of a fragment of the Winchcombe Meteorite. Credit: R Wilcock.

What followed was surely the most exciting week of my career. I joined many of my colleagues from the museum, and Glasgow, Manchester, Plymouth and Open universities, to trek across the neighbouring fields and talk to the local population about the event. 

Several other homeowners found small fragments of the meteorite on their driveways and lawns, and the traipsing across fields proved fruitful when a team led by the University of Glasgow found a relatively large intact stone, over 100g in weight, in a sheep field. 

Winchcombe is the first UK meteorite fall to be recovered in thirty years. Before this, the most recent meteorite fall recovery was in 1991, when the Glatton meteorite dropped in the gardens of a Cambridgeshire village. Before then, the last UK falls were back in the 1960s, in Barwell in Leicestershire and Bovedy in Northern Ireland. Winchcombe is also the UK’s first carbonaceous chondrite fall, perhaps the most studied meteorite type by the UK’s meteorite researchers. 

Held fragment of the Winchcombe Meteorite. Credit: Trustees of the Natural History Museum.

All the property owners agreed to donate their treasure to the Natural History Museum, and our preliminary examination of the meteorite has already begun. Oxygen isotopes, a fingerprint for meteorite classification, were acquired within a week of the fall. They confirmed Winchcombe to be a carbonaceous chondrite, specifically of the CM type (a group of carbonaceous chondrites named after the Mighei meteorite found in Ukraine). Using a scanning electron microscope with a variable vacuum environment and low voltage settings we can image and map chips of the meteorite that have not experienced any preparation or coating (see image below), preserving them to be used for more detailed analyses afterwards. We have also devised an analysis plan for the next months, led by Ashley King, to characterise the meteorite’s mineralogy, petrology, physical characteristics (including magnetic properties), organic components, cosmogenic nuclides (rare isotopes created by the bombardment of cosmic rays), and isotope geochemistry.

An uncoated, unprepared chip of the Winchcombe meteorite. This false colour element map shows that the sample is made mostly of silicates (XRD analysis shows these in the form of hydrated phyllosilicate), sulphides (which show as green in this image) and carbonates (which show as red in this image). The mineralogy is typical for a CM carbonaceous chondrite. Credit: Tobias Salge, NHM 

The Winchcombe meteorite fall is particularly timely because it looks somewhat similar to the material returned in December 2020 by the JAXA Hayabusa2 space mission to asteroid Ryugu, and can potentially be used in analysis rehearsals for the mission material.

The fall of a meteorite such as Winchcombe is not only an important scientific event but also a planetary incident on a very human scale. It is an exceptional opportunity to engage the public in planetary sciences. We have talked to local school children about the meteorite by Zoom and a piece of the meteorite has now been put on display in the Natural History Museum in London. The local museum in Winchcombe is also acquiring some of the rock and planning to exhibit it for residents and tourists to learn about this event and its significance.

The Winchcombe meteorite fall is a wonderful asset for the UK and European science, and it has been a great example of collaboration, community spirit and teamwork that has led to the acquisition and characterisation of this exceptional object. Both the science community and the public have been excited about the meteorite story. It will be studied for many years to come and we welcome the Europlanet community in helping us to share its story. 

Issue 1 of Europlanet Magazine

Europlanet Launches Expert Exchange Programme

Europlanet Launches Expert Exchange Programme

A new Expert Exchange Programme, funded through Europlanet 2024 Research Infrastructure (RI), has been launched to support the mobilisation of the planetary community and transfer of knowledge. The scheme aims to share expertise and best practice, and to prepare new facilities and services for integration into the RI.

The programme provides funding for short visits (up to one week). Due to travel restrictions from the Covid-19 pandemic, virtual visits are also supported through the Europlanet Expert Exchange programme.

Objectives for an Europlanet Expert Exchange might be:

  • To improve infrastructure facilities and services offered to the scientific community by Europlanet 2024 RI laboratories or institutes.
  • To provide training on theoretical or practical aspects of the laboratory/fieldwork required to plan a future TA application.
  • To foster cooperation between academia and industry (SMEs).
  • To support early career professionals to develop skills to use or manage RI facilities or services.
  • To widen participation from Under-Represented States in RI activities and services.
  • To support the inclusion of amateur communities in European planetary science campaigns.
  • To support engagement with wider society e.g. through the involvement of outreach providers, educators, journalists, artists etc.

For more details, see the Expert Exchange Call Page.

Inspiring Stories – Outreach activities in a European project like PLANMAP

Inspiring Stories – Outreach activities in a European project like PLANMAP

In this EPEC Inspiring Outreach Story, Gloria Tognon, a doctoral student at the Center of Studies and Activities for Space ‘G. Colombo’ of Padua (Italy), tells us about her experience of taking part in the European PLANMAP project.

Scientific knowledge is not just intended for a limited number of people and should be shared and made accessible to everyone. The Horizon 2020 PLANetary MAPping (PLANMAP) project is committed to the production of highly informative geological maps of Mars, Mercury, and the Moon, and every European partner dedicated part of its activities to communication and dissemination.

The main aim of PLANMAP was for several products (geological and spectral maps, 3D geomodels, and virtual environments) to be made freely available online to the scientific community as well as the general public. A particular focus was put on the promotion of planetary geology to young people through the creation of downloadable artworks, digital story maps, and a comic novel published in a special issue of the PLaNCK! Magazine about PLANMAP, “Geomapping other worlds” , which also contained interviews with young researchers working on the project.

Within the framework of outreach activities for young people in the general public, all PLANMAP partners actively organised and participated in festivals, public talks, seminars and school activities. Kids in particular were the main targets of European Researchers’ Nights, and although the events were open to the general public, I can tell you that young people from 5 to 10 years old constituted the real audience. The creation of games and video presentations as a way to engage and hold their attention while explaining difficult ideas in the easiest and funniest way was a crucial step. It may not always be easy for adults to think of ways to communicate science to young people, but for me, videos and games represent a recreational pursuit and a super rewarding experience.

Stands of planetary geology at the European Researchers’ Nights 2018 and 2019 at the University of Padua.
Credit: PLANMAP

Less imagination and more practical thinking were required in February 2021 when the PLANMAP project concluded its activities, and put its last efforts into organising the virtual ‘Geology & Planetary Mapping Winter School’, which engaged more than 50 instructors from at least 9 European institutions to address 150 registered participants from all around the world. During the school, I had the great opportunity to share my knowledge of planetary geologic mapping with the students, and to organise the final event displaying the ‘Virtual Reality environments for planetary applications and training for astronauts’. Promoted, funded and sustained by the Ambassade de France en Italie-Institut Français en Italie, Center of Studies and Activities for Space “G. Colombo” of Padua and the PLANMAP project, this event provided online lectures and a virtual reality experience simultaneously held in Padua and Nantes. Participants had an amazing chance to have a real-world perception of another planet, and take a field trip to Mars to perform scientific measurements in the field.

Interactive VR experience with geologic science measurements inside the PLANMAP environment. 
Credit: PLANMAP

I can assure you that engaging with people and sharing your knowledge with them will help you develop your communication skills and self-confidence. Above all, it is the most worthwhile life experience!

Do you like this story and want more? Browse our archive of EPEC Inspiring Stories and get inspired!

Il Cielo in salotto: superLuna!

Wednesday 26 May, starting at 21:30, the largest and most spectacular full moon of the year will be the main character of the first episode of the new EduINAF’s format “Il cielo in salotto“.
Meaning “the sky in your living room”, it aims at bringing science and astronomy closer to the public with live astronomical observations. For this specific occasion, the supermoon will be observed, weather permitting, by the astronomers of some INAF Observatories scattered throughout Italy, (Trieste, Asiago, Rome and Palermo). To comment on the beauties of the sky, Sandro Bardelli, from Bologna, will be our guide on this journey on the Moon, between astronomical curiosities and the latest scientific missions and discoveries, accompanied by guests such as Maria Cristina De Sanctis and Francesca Altieri, researchers at the INAF IAPS in Rome, the geologist Matteo Massironi of the University of Padua, Caterina Boccato, in charge of the INAF Teaching and Outreach, Simone Iovenitti, PhD student at INAF and University of Milan and together with many other partners and guests who will help us to look at the Moon with new eyes.

Special guest of the evening is Samantha Cristoforetti, who will tell us, in a video, her point of view on the Moon and its exploration, and who will receive as a gift the collective portrait of the asteroid 15006 Samcristoforetti made as a tribute to our astronaut in the recent astrophotography challenge, organised by EduINAF in collaboration with the community of italian amateurs.

The appointment is on the EduINAF’s YouTube channel: go here to find all the information!

Happy SuperLuna!

Get creative with Europlanet’s #InspiredByOtherWorlds arts contest 2021

Get creative with Europlanet’s #InspiredByOtherWorlds arts contest 2021

**Deadline Extended to 31 October**

The Europlanet Society Congress 2021 (#EPSC2021) is inviting schools and space enthusiasts of all ages to get creative and share their artworks and performances inspired by other worlds in a contest called #InspiredByOtherWorlds.

The theme this year is “Ingenuity”. Perhaps you are inspired by the Mars helicopter itself, the ingenuity of researchers or engineers that explore other planets, or the ingeniuty of other artists’ creative visions of other worlds. Perhaps you have ingenious ways of revealing planets, moons, asteroids, comets, meteorites, exoplanets through your art.

Art is meant to inspire. Art is meant to be shared. Art allows us to go beyond our limits. Planetary science takes us beyond the limits of our world. What happens when a passion for art and a passion for exploring planets and other worlds meet? Let your imagination take us on a voyage through our Solar System and planets around distant stars! Show us how you have been inspired to create drawings, storytelling, pictures, videos, models, craft works or art installations at home. 

#InspiredByOtherWorlds entries will be showcased in a virtual exhibition and highlighted during a dedicated session during EPSC2021, which is being held as a virtual meeting from 13-24 September 2021. 

All artworks submitted will be considered by a panel of planetary scientists and artists. Categories will include youth (under 18), adult, school class submissions, and multimedia. The winning artworks or performances will be shared via the Europlanet website, newsletters and social media and will be used to inspire young people in future Europlanet outreach activities.

So get creating! 

Rules

For all the information about the contest and how to prepare your submission, see the #InspiredByOtherWorlds FAQ page.

  • If you’d also like to share on social media please use the hashtags #InspiredByOtherWorlds #EPSC2021.
  •  The deadline is 31 October 2021.

Submit your artwork now!

If you have any questions, please contact stavro.ivanovski@inaf.it

Mars Collection of Educational Resources: 7. pH of Mars

Mars Collection of Educational Resources: 7. pH of Mars

In this lesson, we will be looking at the pH of certain environments of Mars and how this can affect its potential habitability.

Please wait while flipbook is loading. For more related info, FAQs and issues please refer to DearFlip WordPress Flipbook Plugin Help documentation.

Overview

Activity Outline: Understand how the pH of the Mars may affect the habitability of the Red Planet. 

Age Range:

10-14

Equipment Needed:

  • Computer
  • Projector

Lesson Time:

45 Minutes (including 1 video)

Topics Covered:

  • Chemistry (pH)
  • Biology (life in extremes)
  • Astronomy (Mars surface conditions)

Learning Outcomes

After completing this activity, pupils will:

  • Understand pH scales
  • Describe how factors on Mars can affect pH
  • Discuss how pH affects habitability.

Download presentation

PowerPoint (4.5 MB)

PDF (2.1 MB)

Download teachers’ resource

Word (365 KB)

PDF (272 KB)

Video experiments

Teacher Continuing Professional Development (CPD)

Italian versions of the resources with video lessons produced by EDU INAF are now available at: Terra chiama Marte.  

Join our SuperLuna! Observing Challenge

Join our SuperLuna! Observing Challenge

Share your pictures and you could win a prize

Spring 2021 is a season of ‘supermoons’, with the Full Moon in April and May coinciding within 10% of the closest lunar orbital distance to Earth. These luminous supermoons, which are about 7% bigger and about 15% brighter than a typical Full Moon, provide a remarkable opportunity for engaging the public.

We thought it would be fun to gather images, or artwork, of the Moon in its different phases between the April Supermoon and the May one.  Making these observations is a great way to see how the Moon changes during the month: look for how the Moon rises and sets later each night, and how the illumination and so shape we see changes too.

The supermoon on 26th May will be the closest Full Moon of the year. Facilities from the Italian National Institute for Astrophysics (INAF) are joining forces to carry out a live event on EduINAF’s social channels. 

During the Italian streaming, aired on the 26th on EduINAF’s main social channels from 9.30pm to 11pm (CET), there will be an opportunity to learn much more about the Moon.  INAF astronomers will guide the audience through the live observations of the moon seen by the various observatories involved with images and insights from guests.

You have the chance for your images to be shown during this broadcast too – as images from our SuperLuna! Observing Challenging will be included in the live broadcast.  We will also be putting a gallery on our website.  This is not a competition, we would just like as many people to participate as possible, so we will make a random selection from the entries to receive an ESA goody bag.  

Join the SuperLuna Campaign!

If you are up for the challenge, upload your pictures to this Flickr group and post them on Twitter or Instagram using the hashtag #SuperLuna    If you do not use Flickr, you may submit your pictures via the form below.

SuperLuna!

Resources for observing the Moon

We have put together some resources to help you observe, photograph and find out more about the Moon. Read more.


If you have an image or animation that is too big to upload, you can send it by WeTransfer to aheward@europlanet-society.org.

See all the images on the Flickr Group.

Banner image © Valeriano Antonini – EduINAF – Associazione AstronomiAmo

Mars Collection of Educational Resources: 6. Evaporation and States of Matter

Mars Collection of Educational Resources: 6. Evaporation and States of Matter

In this lesson, we will be looking at the development of salt beds and the potential for their habitability.

Please wait while flipbook is loading. For more related info, FAQs and issues please refer to DearFlip WordPress Flipbook Plugin Help documentation.

Overview

Activity Outline: Understand the formation of salt pans via the mechanism of evaporation. 

Age Range:

10-14

Equipment Needed:

  • Computer
  • Projector

Lesson Time:

45 Minutes (including 1 video)

Topics Covered:

  • Chemistry
  • Biology (life in extremes)
  • Astronomy (Mars surface conditions)

Learning Outcomes

After completing this activity, pupils will:

  • Critically examine evaporation
  • Understand states of matter
  • Describe how salinity and desiccation affect the habitability of an environment.

Download presentation

PowerPoint (3.5 MB)

PDF (3 MB)

Download teachers’ resource

Word (366 KB)

PDF (266 KB)

Video experiments

Teacher Continuing Professional Development (CPD)

Italian versions of the resources with video lessons produced by EDU INAF are now available at: Terra chiama Marte.  

Mars Collection of Educational Resources: 5. Brines on Mars

Mars Collection of Educational Resources: 5. Brines on Mars

In this lesson, we will be be delving into how saturated brine solutions affect the habitability of Mars.

Please wait while flipbook is loading. For more related info, FAQs and issues please refer to DearFlip WordPress Flipbook Plugin Help documentation.

Overview

Activity Outline: Understand super-saturated salt solutions and how they can affect the habitability of another planetary body.

Age Range:

10-14

Equipment Needed:

  • Computer
  • Projector

Lesson Time:

45 Minutes (including 1 video)

Topics Covered:

  • Geology
  • Chemistry
  • Biology (life in extremes)
  • Astronomy (Mars surface conditions)

Learning Outcomes

After completing this activity, pupils will:

  • Understand how crystallisation works.
  • Be able to explain how we get saturated and super-saturated solutions.
  • Be able to reason how saturated salt solutions affect habitability.

Download presentation

PowerPoint (3 MB)

PDF (2 MB)

Download teachers’ resource

Word (355 KB)

PDF (246 KB)

Video experiments

Teacher Continuing Professional Development (CPD)

Italian versions of the resources with video lessons produced by EDU INAF are now available at: Terra chiama Marte.  

Supermoons rising

Supermoons rising

Spring 2021 is a season of ‘supermoons’, with the Full Moon in April and May coinciding within 10% of the closest lunar orbital distance to Earth. These luminous supermoons, which are about 7% bigger and about 15% brighter than a typical Full Moon, provide a remarkable opportunity for engaging the public.

The supermoon on 26th May will be the closest Full Moon of the year. Facilities from the Italian National Institute for Astrophysics (INAF) are joining forces to carry out a live event on EduINAF’s social channels. Amateur observers and observatories from the Europlanet Telescope Network are invited to join to make the event even more interesting and to be able to observe the moon from different European skies.

During the Italian streaming, aired on the 26th on EduINAF’s main social channels from 9.30pm to 11pm (CET), INAF astronomers will guide the audience through the live observations of the moon seen by the various observatories involved with images and insights from guests.

Join the SuperLuna Campaign!

If you want to collaborate with the Italian Hub before or during the event please click here and contact us.

Resources for observing the Moon

We have put together a list of resources to help you observe, photograph and find out more about the Moon. Read more.

Future plans

We hope to hold follow up events for the public during EPSC2021 in September and during International Observe the Moon Night 2021 on 16th October.

‘Life Beyond Us’ unites scientists and science fiction authors

Life Beyond Us unites scientists and science fiction authors

Life Beyond Us, a new anthology by the European Astrobiology Institute and Laksa Media, depicts the timeless quest for finding alien life in 22 science fiction stories and 22 short science essays and has just started its Kickstarter campaign. Its goal is to publish brilliant science fiction by authors such as Mary Robinette Kowal or Peter Watts and support science understanding and critical thinking.

Science fiction has always been inspired by science and inspired scientists in turn. Its power of imagination and use of narrative, as well as its popularity, make the genre especially suited for raising interest in science. Life Beyond Us aims to achieve this with a unique approach of merging together original science fiction stories revolving around astrobiology, written by world SF authors, and engaging essays by scientists tailored to each story’s topic, answering some burning questions and leaving some open for science yet to discover and science fiction to explore. The story-essay combination blends entertainment and scientific knowledge to arouse curiosity and a deeper interest in science, carrying the reader to the boundary between science and science fiction. Effective science communication and critical thinking support are more than essential in today’s world, and projects such as Life Beyond Us seek to fulfill these complex goals and entertain at the same time.

The book is edited by editor, author and scientist Julie Nováková, who co-leads the outreach working group of the European Astrobiology Institute (EAI), and the book’s publisher Laksa Media editors Lucas K. Law and Susan Forest, who produced award-winning anthologies such as Where The Stars Rise and The Sum of Us. A stellar line-up of authors are contributing stories to Life Beyond Us: Mary Robinette Kowal, Peter Watts, Gregory Benford, Tobias S. Buckell, Premee Mohamed, Julie E. Czerneda, Stephen Baxter, Malka Older, Deji Bryce Olukotun, Geoffrey A. Landis, Bogi Takács, Simone Heller, Rich Larson, Eugen Bacon, Eric Choi, DA Xiaolin Spires, Arula Ratnakar, Tessa Fisher, Valentin Ivanov, Tomáš Petrásek, G. David Nordley and Lucie Lukačovičová.

Kickstarter campaign for the book has just started, offering backers the book in both print and e-book formats and exclusive editions, videochat sessions with authors, editors and scientists, virtual tours of labs and observatories, story critiques, naming a character after the backer and other rewards. Stretch goals to include SF stories in translation and open submissions are planned.

Life Beyond Us is the second astrobiological SF anthology by EAI, following Strangest of All, the “proof-of-concept” e-book anthology of reprint SF stories and original essays by Julie Nováková. With over 6,000 downloads, positive reception and use as a science teaching material, the book showed the merit of such outreach approach. EAI was founded in 2019 with the aims to support research in astrobiology across Europe and beyond, and promote education and outreach by organizing summer schools, supporting the AbGradE forum for students and creating unique outreach projects such as Life Beyond Us. With NASA’s Perseverance on Mars, ESA’s Rosalind Franklin planned to launch soon and other missions to shed light on life in the universe on the way, astrobiology is a booming scientific field bound to create general interest, and SF is a perfect tool to bring it closer and let people feel the curiosity and joy of discovery at the core of science and SF.

Links:

Kickstarter campaign for Life Beyond Us 

EAI website

Laksa Media website

Available for further information and interviews:

Julie Nováková (anthologist, scientist): julie.novakova@gmail.com

Lucas K. Law (anthologist, publisher): lucas.law@laksamedia.comWolf Geppert (EAI Chairman, scientist): wgeppert@fysik.su.se

Mars Collection of Educational Resources: 4. Martian Chemistry

Mars Collection of Educational Resources: 4. Martian Chemistry

In this lesson, we will be looking at the chemistry of Mars and how this can affect its potential habitability

Please wait while flipbook is loading. For more related info, FAQs and issues please refer to DearFlip WordPress Flipbook Plugin Help documentation.

Overview

Activity Outline: Understand how the chemistry of the Martian soil may affect the habitability of the Red Planet. This involves taking a closer look at how temperature and salinity can affect the chemistry of Mars.

Age Range:

10-14

Equipment Needed:

  • Computer
  • Projector

Lesson Time:

45 Minutes (including 2 videos)

Topics Covered:

  • Chemistry (Solubility, Saturation, Compound Structures)
  • Biology (Life in extremes)
  • Astronomy (Mars surface conditions)

Learning Outcomes

After completing this activity, pupils will:

  • Understand what effect temperature has on the chemistry of Mars.
  • Be able to explain how salinity affects freezing points.
  • Review how all of the above affects habitability.

Download presentation

PowerPoint (3.6 MB)

PDF (1.2 MB)

Download teachers’ resource

Word (214 KB)

PDF (254 KB)

Video experiments

Teacher Continuing Professional Development (CPD)

Italian versions of the resources with video lessons produced by EDU INAF are now available at: Terra chiama Marte.  

Inspiring Stories – The Brilliant Club

Inspiring Stories – The Brilliant Club

In this EPEC Inspiring Outreach Story, Melissa Mirino, a PhD student at the Open University, describes engaging school students with her thesis.

My strong enthusiasm for space exploration started from a very young age, after attending planetarium shows and astronauts’ events. Since I have been largely inspired by outreach events myself, I have developed a personal interest in inspiring the younger generation to consider a career in science. I have taken up many teaching and outreach opportunities to develop activities for students of different ages and to share my passion for space with the public.

One of the most important and inspiring experiences I have taken part in so far relates to my work as a PhD tutor with The Brilliant Club. This award-winning charity that works with schools and universities across UK.  The aim of the organisation is to inspire students from under-represented backgrounds to progress to highly-selective universities. 

As a Brilliant Club Tutor, I have been creating and delivering tutorials related to modern topics in STEM, from  climate change to planetary science.

Thanks to the support of my mentors, I had the opportunity to create a custom Handbook, where I could create lessons and activities based on my personal experience (Figure 1). The Handbook is structured in sections to introduce pupils to the many aspects of the space exploration, creating  interactive and different types of activities (see images) to cover and stimulate multiple intelligence types (logical, verbal, visual, etc.). 

During my seven tutorials, students explored the various stages of space missions from the primary concept to the data collection phase. They debated the best target for a space mission, selected landing sites, interpreted data from real active missions (Figure 3-4-5), described the martian surface using 3D images (Figure 6), and much more. 

For the final assignment, NASA Mission Calling, I asked students to propose a mission to NASA, selecting a target and identifying a main research question, as well as the instruments they would need to carry out their investigation. This exercise allowed them to express their imagination, and have fun exploring and learning about the Solar System. They also gained experience of following rules of structure and references, and an important mind-set that they can apply to future challenges.

Reading their essays was inspiring and a lot of fun! You can read some excerpt from their essays below. 

Working as PhD tutor made me realise how great and smart those kids are, but how the lack of support and self-esteem could influence their performances  or could demotivate them in pursuing a career in STEM or academia. Space and human missions can be very engaging for young people and I hope that my contribution will have had a positive impact. I really hope that those kids will find their personal space, wherever it means for them.

The Brilliant Club was an amazing experience and I would recommend young professionals in UK to consider getting involved. More information can be found at: https://thebrilliantclub.org/

Excerpts from a few of the students’ essays, where they explained why their missions would benefit the human race:

[…] This mission is particularly important for the advancement of future human knowledge because if we were to find signs of extra-terrestrial life, we could use this to work out the conditions needed for it to survive. We can then move on to bigger things, like creating an environment on earth that matches these conditions and possibly grow new forms of life. […]The knowledge we acquire from possibly finding and sustaining life on Mars can improve our agriculture as we would need to develop new techniques to grow crops, using less water which is very limited on Mars. 


[…] This mission is important because it will help us determine if there is other life in our solar system, even if it is primitive bacteria.  If we do discover life in the subterranean oceans of Europa, this mission could teach us about how bacteria evolved over the millennia by comparing them to bacteria here on Earth. This mission may also inform us about whether it is possible for life to exist so far away from the Sun. […] We also might be able to learn more about cryogenic storage and how to preserve things in ice, as may have happened on this celestial body. All of this it will enhance our knowledge about other celestial bodies bigger than Europa, including another moon orbiting Jupiter called Ganymede which also has a subterranean ocean. It will also enable us to prepare for colder environments deep in space where solar panels are not as effective at producing power. This would help us plan for and prepare deep space missions. For example, if the water and ice is clean, we could rely on using planets and moons like this to resupply water and oxygen rather than having to transport large quantities from Earth, helping us conduct deep space manned missions. 


In conclusion, my proposal is to send a satellite with a lander to test for biosignatures in the ice. My target is Enceladus due to it fitting all the requirements for life as the temperature stable liquid water has inside it the energy source of hydrothermal vents, Enceladus has an atmosphere and it is less radioactive than possible moons of the Jovian system. By finding biosignatures in the sub-surface ocean of Enceladus we could further human knowledge about the conditions needed for life to form, it could prove to us the existence of extraterrestrial life and it could provide key information about how life on earth originated and adapted.


[…] I think that this mission […] could improve the future greatly because then NASA can be sure that they can populate Mars and then attempt to do it. This has the possibility to change where people live forever. If there were bacteria living on Mars, it would be incredible. If life were to be found, then NASA could study how that life form survives in such harsh conditions. To help with NASA’s future, this would be a huge potential way of making an enormous amount of discoveries, potentially leading to minerals being discovered, since everyone knows how scientists and the world of science are desperate to make such discoveries.


[…] The first reason I believe this research will be beneficial to humans and scientists is because Europa has liquid water, which is rarely, if not never, found on other planets besides Earth. This means that Europa has at least one of three main components needed for humans to thrive and survive. Europa also hosts key elements needed for humans to survive – oxygen, nitrogen and hydrogen – which suggests we could somewhat find and get oxygen and water. Compared to other planets with thick atmospheres, high temperatures or gas planets, they don’t contain liquid water, although they may contain deltas or frozen lakes. This gives Europa an advantage over these planets, as they have something which planets do not have, except for Earth. Since Europa also has flowing water, scientists could study as a terrestrial analogue and try to find an area similar to the flowing river or lake underneath the surface of the moon Europa.


[…] This mission is crucial in human advancement as it will definitely deepen our understanding of Mars. […] This will help us to understand our solar system more in depth but that is for the future first we have to get to Mars. This would greatly improve the quality of our lives. Let us say we do find extra- terrestrial life this tells us life can exist outside of Earth which if one day we need to move we have a location to go. It would be a way to assure the survival of humanity in the case something bad occurs in the future to our planet who know climate change might make us have to leave our beloved Earth.

Do you like this story and want more? Browse our archive of EPEC Inspiring Stories and get inspired!