Planetary-scale ‘heat wave’ discovered in Jupiter’s atmosphere

Planetary-scale ‘heat wave’ discovered in Jupiter’s atmosphere

Europlanet Science Congress (EPSC) 2022 Press Release

An unexpected ‘heat wave’ of 700 degrees Celsius, extending 130,000 kilometres (10 Earth diameters) in Jupiter’s atmosphere, has been discovered. James O’Donoghue, of the Japanese Aerospace Exploration Agency (JAXA), has presented the results this week at the Europlanet Science Congress (EPSC) 2022 in Granada.  

Jupiter’s atmosphere, famous for its characteristic multicoloured vortices, is also unexpectedly hot: in fact, it is hundreds of degrees hotter than models predict. Due to its orbital distance millions of kilometres from the Sun, the giant planet receives under 4% of the amount of sunlight compared to Earth, and its upper atmosphere should theoretically be a frigid -70 degrees Celsius. Instead, its cloud tops are measured everywhere at over 400 degrees Celsius.

“Last year we produced – and presented at EPSC2021 – the first maps of Jupiter’s upper atmosphere capable of identifying the dominant heat sources,” said Dr O’Donoghue. “Thanks to these maps, we demonstrated that Jupiter’s auroras were a possible mechanism that could explain these temperatures.”

Just like the Earth, Jupiter experiences auroras around its poles as an effect of the solar wind. However, while Earth’s auroras are transient and only occur when solar activity is intense, auroras at Jupiter are permanent and have a variable intensity. The powerful auroras can heat the region around the poles to over 700 degrees Celsius, and global winds can redistribute the heat globally around Jupiter.

Looking more deeply through their data, Dr O’Donoghue and his team discovered the spectacular ‘heat wave’ just below the northern aurora, and found that it was travelling towards the equator at a speed of thousands of kilometres per hour. 

The heat wave was probably triggered by a pulse of enhanced solar wind plasma impacting Jupiter’s magnetic field, which boosted auroral heating and forced hot gases to expand and spill out towards the equator.

“While the auroras continuously deliver heat to the rest of the planet, these heat wave ‘events’ represent an additional, significant energy source,” added Dr O’Donoghue. “These findings add to our knowledge of Jupiter’s upper-atmospheric weather and climate, and are a great help in trying to solve the ‘energy crisis’ problem that plagues research into the giant planets.”

Images and videos

A panning-view of Jupiter’s upper atmospheric temperatures, 1000 kilometers above the cloud tops. Jupiter is shown on top of a visible image for context. In this snapshot, the auroral region (near the northern pole, in yellow/white) appears to have shed a massive, planetary-scale wave of heating towards the equator. The feature is over 130,000 kilometers long, or 10-Earth diameters, and is hundreds of degrees warmer than the background. Visible Jupiter image is from Hubble / NASA / ESA / A. Simon (NASA GSFC) / J. Schmidt. Credit: James O’Donoghue

https://youtu.be/gWT0QwSoVls

Further information

O’Donoghue, J., Moore, L., Bhakyapaibul, T., Johnson, R., Melin, H., and Stallard, T.: A planetary-scale heat wave in Jupiter’s mid-latitude upper atmosphere, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-373, 2022.

https://meetingorganizer.copernicus.org/EPSC2022/EPSC2022-373.html

Science contacts

James O’Donoghue
Institute of Space and Astronautical Science
Japan Aerospace Exploration Agency
jameso@ac.jaxa.jp
Web: https://jamesodonoghue.wixsite.com/home
Twitter: @physicsJ

MEDIA CONTACTS

EPSC2022 Press Office
+44 7756 034243
epsc-press@europlanet-society.org

FURTHER INFORMATION 

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

Details of media briefings and recordings can be found at: https://www.europlanet-society.org/press-briefings-at-epsc2022/

All Europlanet media releases can be found at: https://www.europlanet-society.org/press/

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA
The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

ExoClock Counts Down Ariel Exoplanet Targets 

ExoClock Counts Down Ariel Exoplanet Targets 

Details of the orbits of 450 candidate exoplanet targets of the European Space Agency’s Ariel space mission have been presented this week at the Europlanet Science Congress (EPSC) 2022, and submitted for publication in the Astrophysical Journal Supplement Series. The study, coordinated by the ExoClock (www.exoclock.space) project, has been co-authored by 217 professional and amateur astronomers, as well as university and high school students.

“The ethos of ExoClock can be described in three key words: inclusive, interactive, and integrated. It is open to everyone and accepts contributions from amateur astronomers, students, schools and public citizens,” said Anastasia Kokori, ExoClock project coordinator. “This is the third paper produced by the ExoClock team. The majority of the authors are amateur observers – around 160 – and this significant number highlights the interest and the value of the amateur community in contributing to space research.”

Ariel will study a population of more than 1000 exoplanets to characterise their atmospheres. The ExoClock project, which launched in September 2019, aims to support the long-term monitoring of exoplanets through regular observations using small and medium scale telescopes. 

Participants submit measurements known as ‘light curves’, which show the drop in intensity as a planet ‘transits’ or passes in front of its host star and blocks some of the light. When Ariel launches in 2029, it will need to have precise knowledge of the expected transit time of each exoplanet that it observes, in order to maximise the mission’s efficiency and impact.

“The new study showed that over 40% of ephemerides for proposed Ariel targets needed to be updated. This highlights the important role that the ExoClock community can play in monitoring the Ariel targets frequently,” said Tsiaras. 

ExoClock participants schedule and carry out observations, analyse the data and submit their results for review and feedback from members of the science team. This interactive process helps maintain consistency in results, and enriches the experience of the participants who learn through dialogue.

The results show that small and medium sized telescopes can successfully observe ephemerides for the large majority of the Ariel candidate targets. They also show how observations by amateur astronomers using their own telescopes can contribute to real science and have a high impact for a mission. The project helps to integrate Ariel with other space missions, ground-based telescopes, literature data and wider society, making best use of all available resources.

Kokori said: “Science is for everyone, and we are very happy that through the project everyone can be part of a real space mission. Our observers come from more than 35 countries and have different backgrounds. It is wonderful to see so many people willing to learn and work together in a collaborative spirit. Our team keeps growing daily with participants from all over the world.” 

Images

Artist’s impression of the Ariel mission.

Small telescope. Credit: ExoClock
Small telescope typical of those used by amateurs participating in the ExoClock programme. Credit: Aristotle University of Thessaloniki 
Lightcurve example from ExoClock Project
Example of scientific data produced by amateur astronomers. Credit: ExoClock

Further information

The project is part of the Ariel ephemerides working group, aiming to refine the ephemerides of Ariel targets. 

The updated ephemerides were produced as a result of a combination of around 18000 data points: 2911 observations from the ExoClock network, 12633 light curves from space telescopes, 2442 mid-time points from the literature and 184 observations provided by the Exoplanet Transit Database (ETD). 

The pre-print of the publication is available at: https://arxiv.org/abs/2209.09673

The database is accessible at OSF: https://osf.io/p298n/

Science Contacts

Anastasia Kokori
UCL
London, UK
anastasia.kokori.19@ucl.ac.uk

Angelos Tsiaras 
Arcetri Astrophysical Observatory – INAF
Florence, Italy
angelos.tsiaras@inaf.it

MEDIA CONTACTS

EPSC2022 Press Office
+44 7756 034243
epsc-press@europlanet-society.org

FURTHER INFORMATION 

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

Details of media briefings and recordings can be found at: https://www.europlanet-society.org/press-briefings-at-epsc2022/

All Europlanet media releases can be found at: https://www.europlanet-society.org/press/

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science.  In 2022, EPSC is held jointly with the European Astrobiology Network Association (EANA) annual meeting.

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA
The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

Winner of the #PlanetaryScience4All EPEC-EPSC Video Contest 2022

The winner of the #PlanetaryScience4All EPEC-EPSC Video Contest 2022 is ’29P & Comet Chasers’ by Cai Stoddard-Jones.

Hi, I’m Cai, a first year PhD student at Cardiff University. I’m from North Wales originally, but made the trek down south in 2017 to start my MPhys. I like to listen to and make music in my free time either singing or playing my guitar. I’m researching comet 29P’s unusual activity, it’s the most observed comet ever yet, we know very little about it. I aim to characterise the comet. In addition, I develop resources and experiments for a project called ‘Comet Chasers’ in Wales. We teach kids about cometary science and giving them LCO telescope time to take their own images. If their images are used by researchers, their schools are credited.

Find out more about #PlanetaryScience4All

More about EPEC

Big planets get a head start in pancake-thin nurseries

Big planets get a head start in pancake-thin nurseries

Europlanet Science Congress (EPSC) 2022 Press Release

Super-thin planet nurseries have a boosted chance of forming big planets, according to a study announced this week at the Europlanet Science Congress (EPSC) 2022 in Granada, Spain. An international team, led by Dr Marion Villenave of NASA Jet Propulsion Laboratory (JPL), observed a remarkably thin disc of dust and gas around a young star, and found that its structure accelerated the process of grains clumping together to form planets. 

“Planets only have a limited opportunity to form before the disc of gas and dust, their nursery, is dissipated by radiation from their parent star. The initial micron-sized particles composing the disc must grow rapidly to larger millimetre-sized grains, the building blocks of planets. In this thin disc, we can see that the large particles have settled into a dense midplane, due to the combined effect of stellar gravity and interaction with the gas, creating conditions that are extremely favourable for planetary growth,” explained Dr Villenave.

Using the Atacama Large Millimeter Array (ALMA) in Chile, the team obtained very high resolution images of the proto-planetary disc Oph163131, located in a nearby star-forming region called Ophiuchus. Their observations showed that, while disc is twice the diameter of our Solar System, at its outer edge the bulk of the dust is concentrated vertically in a layer only half the distance from Earth to the Sun. This makes it one of the thinnest planetary nurseries observed to date.

“Looking at proto-planetary discs edge-on gives a clear view of the vertical and radial dimensions, so that we can disentangle the dust evolution processes at work,” said Villenave. “ALMA gave us our first look at the distribution of millimetre-sized grains in this disc. Their concentration into such a thin layer was a surprise, as previous Hubble Space Telescope (HST) observations of finer, micron-sized particles showed a region extending almost 20 times higher.”

Simulations by the team based on the observations show that the seeds of gas-giant planets, which must be at least 10 Earth-masses, can form in the outer part of the disc in less than 10 million years. This is within the typical lifetime of a planetary nursery before it dissipates.  

“Thin planet nurseries appear to be favourable for forming big planets, and may even facilitate planets forming at large distance from the central star,” said Villenave. “Finding further examples of these thin discs might help provide more insights into the dominant mechanisms for how wide-orbit planets form, a field of research where there are still many open questions.”

Images

Images of the Oph163131 disc as seen by ALMA (left) and HST (right). The limits of the millimetre-sized particles in the disc observed by ALMA are outlined in white. They are concentrated in a much narrower layer than the finer (micron-sized) dust observed by the Hubble Space Telescope. Credit: ALMA (ESO/NAOJ/NRAO) /Hubble/NASA/ESA /M. Villenave
Images of the Oph163131 disc as seen by ALMA (left) and HST (right). The limits of the millimetre-sized particles in the disc observed by ALMA are outlined in white. They are concentrated in a much narrower layer than the finer (micron-sized) dust observed by the Hubble Space Telescope. Credit: ALMA (ESO/NAOJ/NRAO) /Hubble/NASA/ESA /M. Villenave

https://www.europlanet-society.org/wp-content/uploads/2022/09/PR-Marion-Villenave-BigPlanetsHeadStartFormation5483.png

Contacts

Marion Villenave
Jet Propulsion Laboratory
Pasadena
California, USA
marion.f.villenave@jpl.nasa.gov

MEDIA CONTACTS

EPSC2022 Press Office
+44 7756 034243
epsc-press@europlanet-society.org

FURTHER INFORMATION 

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

Details of media briefings and recordings can be found at: https://www.europlanet-society.org/press-briefings-at-epsc2022/

All Europlanet media releases can be found at: https://www.europlanet-society.org/press/

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA
The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

Women in Astronomy: still a long way to go

Women in Astronomy: still a long way to go

It has been known for decades: women are under-represented in Astronomy and STEM (Science, Technology, Engineering and Mathematics) fields due to various factors suppressing their careers, and the recent global surveys do not show promising trends. 

For this reason, the IAU (International Astronomical Union) strategic plan from 2020-2030 aims to address the challenges faced by Women in Astronomy, foster inclusiveness, and facilitate the advancement of the next generation of astronomers in order to improve ‘gender balance’ and ‘equal opportunity’ in the workplace by adapting effective policies and action plans. 

The situation, in fact, is still dramatic. While there have been global efforts in the past to address these issues and achieve the gender balance in Astronomy, somehow, it has been marginally successful due to ineffective action plans. And the participation of the Astronomy community in inclusiveness, advancement of next-generation astronomers, and gender balance activities is still too low.  

The data collected in 2021 are quite worrying” says Mamta Pandey-Pommier of the LUMP/CNRS, Université de Montpellier (France), chair of the IAU working group. “Among the total IAU members, only 21.2% are female, and an astonishingly low (1.6%) participation of members from both the genders is seen in the Women in Astronomy working group. And of those, only 11.4% is male, indicating that these issues are not yet seen as issues that should concern everyone”.

A possible reason can be found in the lack of funds to support women in astronomy at every career stage. “For example, most of the gender balance-related work is being carried out on a volunteering (unpaid) basis as no funds are provided to address these issues by funding agencies and institutions.” adds Mamta.

In order to raise awareness and participation on the topic, take stock of the situation and analyse possible solutions, the IAU Women in Astronomy Working Group activities and their survey results were presented at EPSC2022 in Granada this week by Mamta and Arianna Piccialli of the Royal Belgium Institute of Space Aeronomy (Belgium) on behalf of the entire Working Group. 

Further information:
Pandey-Pommier, M. and Piccialli, A. and the IAU WiA WG members: IAU Women in Astronomy Working Group activities and survey results, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-1175, 2022.
https://meetingorganizer.copernicus.org/EPSC2022/EPSC2022-1175.html

How global warming affects astronomical observations

How global warming affects astronomical observations

Astronomical observations from ground-based telescopes are sensitive to local atmospheric conditions. Anthropogenic climate change will negatively affect some of these conditions at observation sites around the globe, as a team of researchers led by the University of Bern and the National Centre of Competence in Research (NCCR) PlanetS report.

The quality of ground-based astronomical observations delicately depends on the clarity of the atmosphere above the location from which they are made. Sites for telescopes are therefore very carefully selected. They are often high above sea level, so that less atmosphere stands between them and their targets. Many telescopes are also built in deserts, as clouds and even water vapour hinder a clear view of the night sky.

A team of researchers led by the University of Bern and the National Centre of Competence in Research (NCCR) PlanetS shows in a study, published in the journal Astronomy & Astrophysics and presented at the Europlanet Science Congress 2022 in Granada, how one of the major challenges of our time – anthropogenic climate change – now even affects our view of the cosmos.

A blind spot in the selection process

Even though telescopes usually have a lifetime of several decades, site selection processes only consider the atmospheric conditions over a short timeframe. Usually over the past five years – too short to capture long-term trends, let alone future changes caused by global warming,” Caroline Haslebacher, lead author of the study and researcher at the NCCR PlanetS at the University of Bern, points out. The team of researchers from the University of Bern and the NCCR PlanetS, ETH Zurich, the European Southern Observatory (ESO) as well as the University of Reading in the UK therefore took it upon themselves to show the long-term perspective.

Worsening conditions around the globe

Their analysis of future climate trends, based on high resolution global climate models, shows that major astronomical observatories from Hawaii to the Canary Islands, Chile, Mexico, South Africa and Australia will likely experience an increase in temperature and atmospheric water content by 2050.  This, in turn, could mean a loss in observing time as well as a loss of quality in the observations.

Nowadays, astronomical observatories are designed to work under the current site conditions and only have a few possibilities for adaptation. Potential consequences of the climatic conditions for telescopes therefore include a higher risk of condensation due to an increased dew point or malfunctioning cooling systems, which can lead to more air turbulence in the telescope dome,” Haslebacher says.

The fact that the effects of climate change on observatories had not been taken into account before was not an oversight, as study co-author Marie-Estelle Demory says, but was not least due to the state of the art: “This is the first time that such a study has been possible. Thanks to the higher resolution of the global climate models developed through the Horizon 2020 PRIMAVERA project, we were able to examine the conditions at various locations of the globe with great fidelity – something that we were unable to do with conventional models. These models are valuable tools for the work we do at the Wyss Academy,” says the senior scientist at the University of Bern and member of the Wyss Academy for Nature.

This now allows us to say with certainty that anthropogenic climate change must be taken into account in the site selection for next-generation telescopes, and in the construction and maintenance of astronomical facilities,” says Haslebacher.

INFORMATION ABOUT THE PUBLICATION

Haslebacher et al.: Impact of climate change on site characteristics of eight major astronomical observatories, Astronomy & Astrophysics, https://www.aanda.org/10.1051/0004-6361/202142493
DOI: 10.1051/0004-6361/202142493

IMAGES

The VLT’s Laser Guide Star: A laser beam launched from VLT´s 8.2-metre Yepun telescope crosses the majestic southern sky and creates an artificial star at 90 km altitude in the high Earth´s mesosphere. The Laser Guide Star (LGS) is part of the VLT´s Adaptive Optics system and it is used as reference to correct images from the blurring effect of the atmosphere. © ESO / G. Hüdepohl
Caroline Haslebacher,
Center for Space and Habitability (CSH) and NCCR PlanetS, University of Bern
© Courtesy of Caroline Haslebacher
Dr. Marie-Estelle Demory, Wyss Academy for Nature, University of Bern
© Courtesy of Marie-Estelle Demory

SCIENCE CONTACTS

Caroline Haslebacher
Center for Space and Habitability (CSH), Department of Space Research & Planetary Sciences (WP) and NCCR PlanetS, University of Bern
Phone: +41 31 684 36 21
E-Mail: caroline.haslebacher@unibe.ch

Dr. Marie-Estelle Demory
Wyss Academy for Nature, University of Bern
E-Mail: marie-estelle.demory@wyssacademy.org

CONTACTS

EPSC2022 Press Office
+44 7756 034243
epsc-press@europlanet-society.org

FURTHER INFORMATION 

About Wyss Academy for Nature

The Wyss Academy for Nature at the University of Bern is a place of innovation, where research, business, policymakers and communities come together to co-design solutions for sustainable futures. The Wyss Academy’s mission is to turn scientific knowledge into action. Combining ambitious, innovative goals with a transformative approach, it was founded to develop innovative long-term pathways that strengthen and reconcile biodiversity conservation, human well-being and the sustainable use of natural resources in a variety of landscapes throughout the world. We co-design and implement concrete projects across a swathe of regions and countries. This global structure facilitates the replication of successes and learning. The Wyss Academy for Nature currently operates Hubs in Central Europe (Bern, Switzerland), Southeast Asia, East Africa and South America.

In December 2019, the Wyss Foundation, the University of Bern, and the Canton of Bern signed the tripartite framework agreement for the Wyss Academy for Nature at the University of Bern. In

May 2020, the Wyss Academy was founded as an independent foundation, the foundation Board of Trustees was appointed and the Director was elected. The Wyss Foundation donates within the framework of the Wyss Campaign for Nature a contribution of 100 million Swiss francs. The canton and the University of Bern contribute 50 million francs each.More information: www.wyssacademy.org

About Center for Space and Habitability (CSH)

The mission of the Center for Space and Habitability (CSH) is to foster dialogue and interactions between the various scientific disciplines interested in the formation, detection and characterization of other worlds within and beyond the Solar System, the search for life elsewhere in the Universe, and its implications for disciplines outside of the sciences. The members, affiliates and collaborators include astronomers, astrophysicists and astrochemists, atmospheric, climate and planetary scientists, geologists and geophysicists, biochemists and philosophers. The CSH is home to the CSH and Bernoulli Fellowships, which host young, dynamic and talented researchers from all over the world to conduct independent research. It actively run a series of programs to stimulate interdisciplinary research within the University of Bern including collaborations and/or open dialogue with Medicine, Philosophy and Theology. More information: https://www.csh.unibe.ch/

Bernese space exploration: With the world’s elite since the first moon landing

When the second man, “Buzz” Aldrin, stepped out of the lunar module on July 21, 1969, the first task he did was to set up the Bernese Solar Wind Composition experiment (SWC) also known as the “solar wind sail” by planting it in the ground of the moon, even before the American flag. This experiment, which was planned, built and the results analysed by Prof. Dr. Johannes Geiss and his team from the Physics Institute of the University of Bern, was the first great highlight in the history of Bernese space exploration.

Ever since Bernese space exploration has been among the world’s elite. The University of Bern has been participating in space missions of the major space organizations, such as ESA, NASA and JAXA. It is currently co-leading the European Space Agency’s (ESA) CHEOPS mission with the University of Geneva. In addition, Bernese researchers are among the world leaders when it comes to models and simulations of the formation and development of planets.The successful work of the Department of Space Research and Planetary Sciences (WP) from the Physics Institute of the University of Bern was consolidated by the foundation of a university competence center, the Center for Space and Habitability (CSH). The Swiss National Science Foundation also awarded the University of Bern the National Center of Competence in Research (NCCR) PlanetS, which it manages together with the University of Geneva.

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA

The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

Four-legged Jumping Robots LEAP to Explore the Moon

Four-legged Jumping Robots LEAP to Explore the Moon

A four-legged robot trained through artificial intelligence has learned the same lesson as the Apollo astronauts – that jumping can be the best way to move around on the surface the Moon. An update on LEAP (Legged Exploration of the Aristarchus Plateau), a mission concept study funded by ESA to explore some of the most challenging lunar terrains, has been presented today at the Europlanet Science Congress (EPSC) 2022 in Granada by Patrick Bambach.

“LEAP’s target is the Aristarchus plateau, a region of the Moon that is particularly rich in geologic features but highly challenging to access,” said Patrick Bambach of the Max Planck Institute for Solar System Research in Germany. “With the robot, we can investigate key features to study the geologic history and evolution of the Moon, like the ejecta around craters, fresh impact sites, and collapsed lava tubes, where material may not have been altered by space weathering and other processes.”

The LEAP team is working towards the robot being integrated on ESA’s European Large Logistic Lander (EL3), which is scheduled to land on the Moon multiple times from the late 2020s to the early 2030s. LEAP is based on the legged robot, ANYmal, developed at ETH Zürich and its spin-off ANYbotics. It is currently adapted to the lunar environment by a consortium from ETH Zurich, the Max Planck Institute for Solar System Research, OHB, the University of Münster, and the Open University.

“Traditional rovers have enabled great discoveries on the Moon and Mars, but have limitations,” said Bambach. “Exploring terrain with loose soil, large boulders or slopes over 15 degrees are particularly challenging with wheels. For example, the Mars rover, Spirit, had its mission terminated when it got stuck in sand.”

ANYmal can move in different walking gaits, enabling it to cover large distances in a short amount of time, climb steep slopes, deploy scientific instruments, and even recover in the unlikely event of a fall. The robot can also use its legs to dig channels in the soil, flip over boulders or smaller rocks for further inspection, and pick up samples. 

Initially, the robot has been trained using a Reinforcement Learning approach in a virtual environment to simulate the lunar terrain, gravity and dust properties. It has also been deployed in the field for an outdoor hike.

“Interestingly, ANYmal started to use a jumping-like mode of locomotion, just as the Apollo Astronauts did – realising that jumping can be more energy efficient than walking,” said  Bambach.

The current design remains below 50 kg and includes 10 kg of scientific payload mass, notionally being capable of carrying multispectral sensors, ground penetrating radar, mass spectrometers, gravimeters, and other instrumentation. 

“LEAP’s ability to collect selected samples and bring them to a lander or ascent vehicle offers additional exciting opportunities for sample a return missions in highly challenging environments on the Moon or Mars,” said Bambach.

Images

The LEAP rover is based on the legged robot, ANYmal, developed at ETH Zürich and its spin-off ANYbotics. Credit: ETH Zürich/RSL Robotics Labs
The LEAP rover is based on the legged robot, ANYmal, developed at ETH Zürich and its spin-off ANYbotics. Credit: ETH Zürich/ETH Zürich/Robotics System Lab (RSL)
LEAP (Legged Exploration of the Aristarchus Plateau) is a mission concept study funded by ESA to explore some of the most challenging lunar terrains. Credit:  ETH Zürich/RSL Robotics Labs
LEAP (Legged Exploration of the Aristarchus Plateau) is a mission concept study funded by ESA to explore some of the most challenging lunar terrains. Credit: ETH Zürich/Robotics Systems Labs (RSL)
The LEAP rover is trained using a Reinforcement Learning approach in a virtual environment to simulate the lunar terrain, gravity and dust properties. Credit: ETH Zürich/RSL Robotics Labs
The LEAP rover is trained using a Reinforcement Learning approach in a virtual environment to simulate the lunar terrain, gravity and dust properties. Credit: ETH Zürich/ETH Zürich/Robotics System Lab (RSL)
LEAP’s target is the Aristarchus plateau, a region of the Moon that is particularly rich in geologic features but highly challenging to access.
LEAP’s target is the Aristarchus plateau, a region of the Moon that is particularly rich in geologic features but highly challenging to access. credit: NASA/ESA.

Animations

Video including simulations and a outdoor hike: 

Science Contacts

Patrick Bambach
Max Planck Institute for Solar System Research
Germany

bambach@mps.mpg.de

Media Contacts 

EPSC2022 Press Office
+44 7756 034243
epsc-press@europlanet-society.org

Notes for Editors

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA

The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

Virtual hiking Map for Jezero Crater, the Mars 2020 Perseverance Rover Landing Site

Virtual hiking Map for Jezero Crater, the Mars 2020 Perseverance Rover Landing Site

Prospective Mars explorers can now take a hike around the landing site of NASA’s Mars 2020 Perseverance rover with an interactive map loaded with orbital imagery, terrain data as well as synthetic and real 3D panoramic views of Jezero crater and its surrounding area. The map, which can be accessed through a normal web browser, has been presented today at the Europlanet Science Congress (EPSC) 2022 in Granada, Spain, by Sebastian Walter of the Freie Universität Berlin.

“The map is the perfect tool for planning a future visit to Mars, with an interactive interface where you can choose from different available base datasets. Some of the slopes are pretty steep, so watch out for those if you want to avoid too much oxygen consumption!” said Sebastian Walter. “To get a real feeling of what to expect on your future Mars trip, you can click on one of the waypoint marker symbols to enter either a fullscreen 3D view or, if you have a Virtual Reality setup, to enter a fully immersive environment. You can even listen to the sounds of the rover if you stand close by, but please don’t touch it – otherwise you would contaminate the probes.” 

The map allows virtual hikers to zoom in and out, and pan rapidly across scenes, so that they can explore the landscape from large scales down to centimetre-detail. Some of the 360° panoramas integrated with the waypoints have been synthetically rendered from orbital image data. Others are real panoramas stitched together from a multitude of single images taken by the Mastcam-Z camera instrument onboard the Mars 2020 Rover Perseverance, which have been provided by the University of Arizona. The sounds have been recorded by the SuperCam instrument on that same rover mission.

The base layer of the map is a merged dataset derived from three different instruments currently orbiting Mars: the HRSC on Mars Express, and the Context Camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) instruments on Mars Reconnaissance Orbiter (MRO). The HiRISE data has been provided by provided by the Terrain Relative Navigation (TRN) team of the Jet Propulsion Laboratory (JPL).

The Jezero map builds on the data portal of the High Resolution Stereo Camera (HRSC) instrument of ESA’s Mars Express mission, which provides tools to visualise and disseminate large amounts of Mars images and terrain data in an online environment. 

“Initially we created the Jezero map as an outreach application to complement the HRSC Mapserver tool, which supports professional scientists to explore the Martian surface,” said Sebastian Walter. “But as the rover returns more and more high-resolution image data and even audio recordings, it turns out to be the perfect tool for immersive visualisation of that data in a scientific context by itself.”

Further information:

Direct link to the interactive map: https://maps.planet.fu-berlin.de/jezero

Walter, S.H.G., Gross, C., Neesemann, A., Munteanu, R., Jaumann, R., Postberg, F., and Bell, J.: An Interactive Virtual Hiking Map for Jezero Crater, the Mars 2020 Perseverance Rover Landing Site, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-32, https://doi.org/10.5194/epsc2022-32, 2022.

Acknowledgements: This work is supported by the German Space Agency (DLR Bonn), grant 50 OO 2204, on behalf of the German Federal Ministry for Economic Affairs and Climate Action.

Images

Map view with base dataset, clickable viewpoints are marked as droplets. Credit: HiRISE/CTX/HRSC
Map view with base dataset, clickable viewpoints are marked as droplets. Credit: HiRISE/CTX/HRSC
Figure 2: Virtual view from top of the western delta into the crater. Credit: HiRISE/CTX/HRSC
Figure 2: Virtual view from top of the western delta into the crater. Credit: HiRISE/CTX/HRSC
Virtual view from top of Jezero Mons into the crater. Credit: HiRISE/CTX/HRSC
Virtual view from top of Jezero Mons into the crater. Credit: HiRISE/CTX/HRSC
MastcamZ panorama mosaic from the Octavia E. Butler landing site. Credit: Mars 2020/Mastcam-Z/PIA24264, NASA/JPL/ASU/MSSS

Science Contacts

Sebastian Walter
Freie Universität Berlin
Planetary Sciences and Remote Sensing
sebastian.walter@fu-berlin.de

Media Contacts

EPSC2022 Press Office
+44 7756 034243
epsc-press@europlanet-society.org

Notes for Editors

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA

The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

First 3D renders from JunoCam data reveal “frosted cupcake” clouds on Jupiter

First 3D renders from JunoCam data reveal “frosted cupcake” clouds on Jupiter

Animations of the relative heights of the cloud tops of Jupiter reveal delicately textured swirls and peaks that resemble the frosting on top of a cupcake. The results have been presented today by citizen scientist and professional mathematician and software developer, Gerald Eichstädt, at the Europlanet Science Congress (EPSC) 2022 in Granada. 

The animation uses data from JunoCam, the visible-light camera onboard NASA’s Juno spacecraft, which has been orbiting Jupiter since 2016. Put on board initially to increase public engagement around the exploration of Jupiter and its moons, a worldwide team of citizen scientists, working in collaboration with professional astronomers and the Juno team, have demonstrated that JunoCam can also provide valuable science. 

“The Juno mission provides us with an opportunity to observe Jupiter in a way which is essentially inaccessible by Earth-based telescopic observations. We can look at the same cloud features from very different angles within only a few minutes.” said Dr Eichstätd. “This has opened up a new opportunity to derive 3D elevation models of Jupiter’s cloud-tops. The images of the wonderful chaotic storms on Jupiter seem to come to life, showing clouds rising at different altitudes.”

Using the different ways in which sunlight is reflected and scattered by clouds, the team has succeeded in pinpointing the elevation of the cloud-tops observed. Solar illumination is most intense for clouds in the upper atmosphere. Deeper in the atmosphere, more light is absorbed – particularly by methane – before being scattered back up to the camera by the cloud tops. 

Understanding the relative heights of the spiky pillars within the swirls will help scientists to unveil in more detail the elements that compose them.  

“From theoretical models, the clouds are expected to be composed of different chemical species, ammonia, ammonium hydrosulphide, and water ice from top to bottom.” added Dr Eichstädt. “Once we calibrate our data thanks to other measurements of the same cloud tops, we will test and refine the theoretical predictions and have a better 3D picture of the chemical composition.”

Images and Videos

Intensity data of visible light seen by a camera can be plotted as a 3D elevation landscape. This is a still from a computer animation showing a flight over such a landscape for processed, red-filtered image data collected by JunoCam, the wide-angle visible light imager of NASA’s Juno spacecraft, during her 43rd close Jupiter flyby. Credit: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt
Intensity data of visible light seen by a camera can be plotted as a 3D elevation landscape. This is a still from a computer animation showing a flight over such a landscape for processed, red-filtered image data collected by JunoCam, the wide-angle visible light imager of NASA’s Juno spacecraft, during her 43rd close Jupiter flyby. Credit: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

 

Video

Intensity data of visible light seen by a camera can be plotted as a 3D elevation landscape. This computer animation shows a flight over such a landscape for processed, red-filtered image data collected by JunoCam, the wide-angle visible light imager of NASA’s Juno spacecraft, during her 43rd close Jupiter flyby. The image underlying this fly-over was taken at a nominal altitude of 13,536.3 km above Jupiter’s cloud tops. In general, brighter cloud-tops correlate to their higher elevation, especially when observed in the 890 nanometre methane absorption band. But exceptions exist, mostly induced by cloud-top color and albedo. Juno scientists are working on a calibration which translates these brightness landscapes into models of physical cloud-top elevation models. Video credit: NASA / JPL-Caltech / SwRI / MSSS / Gerald Eichstädt

Further information

Eichstädt, G., Orton, G., and Hansen-Koharcheck, C.: Long-Baseline Observations with JunoCam, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-1124, 2022. 
https://meetingorganizer.copernicus.org/EPSC2022/EPSC2022-1124.html

Science contacts

Gerald Eichstädt

Freelance Mathematician and Software Developer

Stuttgart, Germany

gerald.eichstaedt@t-online.de

Media contacts 

EPSC2022 Press Office

+44 7756 034243

epsc-press@europlanet-society.org

Notes for Editors

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA

The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

The ESA Hera Mission: Investigating binary asteroid (65803) Didymos and the DART crater

The ESA Hera Mission: Investigating binary asteroid (65803) Didymos and the DART crater

One week ahead of the impact by NASA’s Double Asteroid Redirection Test (DART) spacecraft with Dimorphos, the moon of binary asteroid (65803) Didymos, representatives of the European Space Agency’s Hera mission, the Italian LICIACube mission and DART have presented an update on the missions at the Europlanet Science Congress (EPSC) 2022.

Planetary defense is the preparation of humankind to avoid a catastrophic collision between Earth and asteroids, like the Chicxulub event that led to the extinction of the dinosaurs 65 million years ago, or the impact of an asteroid that created the 1km-size meteor crater in Arizona about 50 000 years ago. Humanity’s first ever demonstration of asteroid deflection is happening right now: On 26 September 2022, NASA’s Double Asteroid Redirection Test (DART) spacecraft will impact the asteroid Dimorphos—which poses no threat to Earth—to change its orbit in a measurable way. The Johns Hopkins Applied Physics Laboratory (APL) manages the DART mission for NASA’s Planetary Defense Coordination Office as a project of the agency’s Planetary Missions Program Office. Using the same technique, humankind could in the future attempt to deviate an asteroid on collision course with Earth if a threat were ever discovered.

Dimorphos is part of an asteroid pair, like the Earth-Moon system, and orbits around a larger asteroid called Didymos. Following DART’s impact, the change in Dimorphos’ orbit can be detected by telescopic observations from Earth, and during a few minutes following the impact, observations of the ejecta from the impact will be attempted by LICIACube, a small briefcase-sized satellite travelling along with DART and contributed by the Italian Space Agency (ASI). Therefore, shortly after the impact, we should know whether DART hit successfully Dimorphos as well as the geological properties of the impact site, whether ejecta have been produced by the impact and we will have a quantification of the resulting orbital change of the target around its central body Didymos. 

However, to further understanding of the impact process and the scaling of the outcome to other asteroids, a follow on investigation of the target asteroid and the crater resulting from DART’s kinetic impact are planned. This detailed investigation will be performed by ESA’s Hera mission. To be launched in 2024, Hera will rendezvous with the Didymos system in late 2026. Together with its two companion “cubesats”, called Juventas and Milani, the mission will perform a full characterization of the deflection measuring the mass of Dimorphos to help further understand the efficiency of the DART impact, as well as studying the impact crater in detail. Additionally, Hera aims to further improve understanding of the kinetic spacecraft impactor process and investigate the physical properties of the target asteroid. This will help enable scaling the impact outcome to other targets.

Integration of the Hera spacecraft and its scientific instruments are ongoing. Together with DART, this pair of missions will not only validate the kinetic impactor asteroid deflection technique but also provide unique clues on the formation processes of binary asteroids and ultimately of the Solar System.

2022 Farinella Prize Awarded to Julie Castillo-Rogez and Martin Jutzi

2022 Farinella Prize Awarded to Julie Castillo-Rogez and Martin Jutzi

Dr Julie Castillo-Rogez, a planetary scientist working at NASA’s Jet Propulsion Laboratory (JPL) in California (USA), and Dr Martin Jutzi, a physicist working at the Physics Institute of University of Bern (Switzerland), have been awarded jointly the 2022 Paolo Farinella Prize for their outstanding contributions to the field of “Asteroids: Physics, Dynamics, Modelling and Observations”. The award ceremony took place during the Europlanet Science Congress (EPSC) 2022 in Granada, Spain, and was followed by a 15-minute prize lecture from each of the winners.

The annual Prize was established in 2010 to honour the memory of the Italian scientist Paolo Farinella (1953-2000). The Prize acknowledges an outstanding researcher not older than 47 years (the age of Farinella when he passed away) who has achieved important results in one of Farinella’s fields of work. Each year the Prize focuses on a different research area and, in 2022, the twelfth edition was devoted to asteroids, which in recent years have become an increasingly important area of interest for the scientific community.

Dr Castillo-Rogez has made significant contributions to our understanding of the physical and chemical evolutions of small and mid-sized Solar System bodies. Through modelling and synthesis of existing data, she has gleaned information about the origins and dynamical evolution of objects from the main belt, between Mars and Jupiter, to the trans-Neptunian region, i.e. the region that extends farther from the Sun than the planet Neptune. Her multi-disciplinary expertise, which embraces geology, geophysics and planetology, has allowed her to apply increasingly sophisticated tools to understand the geochemical evolution of objects potentially characterised by volatile elements. Dr Castillo-Rogez’s contribution was critical to the success of the Dawn mission at the dwarf planet Ceres: before the mission, her studies paved the way to understanding that Ceres likely had a subsurface ocean in its past, and might still harbour brines; after the mission, her analysis of Dawn’s data advanced the hypothesis that mid-sized cold bodies could be past or present ocean worlds.

Dr Jutzi has made outstanding contributions to the study of collisional processes involving bodies ranging from small asteroids to planetary scales. In particular, he developed a state-of-the-art Smoothed Particle Hydrodynamic (SPH) shock physics code specially suited to study the regimes of collisions among small bodies where the complex effects of material strength, friction, porosity as well as gravity determine the outcome concurrently. Dr Jutzi also succeeded in reproducing the evolution of the asteroid Vesta’s observed shape following two overlapping planet-scale collisions, and even provided maps of impact excavation and deposition of ejected materials. Recently, he contributed to the numerical modelling of the impact of NASA’s DART mission on the moon of the binary asteroid Didymos, which showed that the small moon Dimorphos may be entirely reshaped by the impact.

Overall, Dr Castillo-Rogez’s and Dr Jutzi’s work have led to a deeper understanding of the nature and evolution of asteroids, both from a theoretical and an observational point of view. 

Dr Castillo-Rogez received her MS in Geophysics and her PhD in Planetary Geophysics at University of Rennes (France). She is currently Associate Scientist for the Planetary Science Directorate at Jet Propulsion Laboratory (California, USA).

Dr Jutzi received his MS in Physics at University of Bern (Switzerland) and then his PhD in Physics at University of Bern and Nice Observatory (France). He now holds the position of Senior Researcher at University of Bern.

Before receiving the Prize, Dr Castillo-Rogez commented “I am honored to win this prize, especially as there are so many deserving colleagues out there. The bulk of my work is based on the observations returned by the Cassini-Huygens and Dawn mission, both built on highly successful international collaborations. Working with these teams has been an incredible experience and led to long-lasting friendships on both sides of the Atlantic. So this makes receiving this prize at EPSC 2022 very special. Unfortunately, I have never had the privilege to meet Dr. Farinella, although I have many times referred to his work.”

Dr Jutzi said: “I am very honoured to be awarded the Paolo Farinella Prize. For me this is an important recognition of my contribution to the understanding of asteroid physics, in particular the impact processes that determined the evolution and current state of these objects – some of them being explored by ongoing space missions as we speak. I am grateful to my scientific mentors and colleagues who have helped me achieve this.”

 About the Paolo Farinella Prize

The Paolo Farinella Prize (https://www.europlanet-society.org/paolo-farinella-prize/) was established to honour the memory and the outstanding figure of Paolo Farinella (1953-2000), an extraordinary scientist and person, in recognition of significant contributions given in the fields of interest of Farinella, which span from planetary sciences to space geodesy, fundamental physics, science popularisation, and security in space, weapons control and disarmament. The winner of the prize is selected each year on the basis of his/her overall research results in a chosen field, among candidates with international and interdisciplinary collaborations, not older than 47 years, the age of Farinella when he passed away, at the date of 25 March 2000. The prize was first proposed during the “International Workshop on Paolo Farinella the scientist and the man,” held in Pisa in 2010, supported by the University of Pisa, ISTI/CNR and by IAPS-INAF (Rome).

The first “Paolo Farinella Prize” was awarded in 2011 to William Bottke, for his contribution to the field of “physics and dynamics of small solar system bodies”. In 2012 the Prize went to John Chambers, for his contribution to the field of “formation and early evolution of the solar system”. In 2013, to Patrick Michel, for his work in the field of “collisional processes in the solar system.” In 2014, to David Vokrouhlicky for his contributions to “our understanding of the dynamics and physics of solar system, including how pressure from solar radiation affects the orbits of both asteroids and artificial satellites”, in 2015 to Nicolas Biver for his studies of “the molecular and isotopic composition of cometary volatiles by means of submillimetre and millimetre ground and space observations”, and in 2016 to Kleomenis Tsiganis for “his studies of the applications of celestial mechanics to the dynamics of planetary systems, including the development of the Nice model”. In 2017, to Simone Marchi for his contributions to “understanding the complex problems related to the impact history and physical evolution of the inner Solar System, including the Moon”. In 2018, to Francis Nimmo, for his contributions in our “understanding of the internal structure and evolution of icy bodies in the Solar System and the resulting influence on their surface processes”. In 2019, to Scott Sheppard and Chad Trujillo, for their outstanding collaborative work for the “observational characterisation of the Kuiper belt and the Neptune-trojan population”. In 2020, to Jonathan Fortney and Heather Knutson for their significant contribution in our “understanding of the structure, evolution and atmospheric dynamics of giant planets”. Finally, in 2021, to Diana Valencia and Lena Noack, for their significant contributions in “our understanding of the interior structure and dynamics of terrestrial and super-Earth exoplanets”.

Images

Julie Castillo-Rogez. Credit: J Castillo-Rogez

Martin Jutzi. Credit: M Jutzi

The Farinella Prize winners 2022, Julie Castillo-Rogez of JPL (left) and Martin Jutzi of the University of Bern (right). The prizes were presented by Alessandro Rossi, IFAC-CNR, Italy.

Science Contacts

Julie Castillo-Rogez
Jet Propulsion Laboratory
julie.c.castillo@jpl.nasa.gov

Martin Jutzi
University of Bern
Space Research & Planetary Sciences
+41 31 684 85 49
martin.jutzi@andre-gallispace-unibe-ch

Media Contacts

EPSC2022 Press Office
+44 7756 034243
epsc-press@europlanet-society.org

Notes for Editors

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA

The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

Star Light Simulator illuminates the search for life around the Milky Way’s most common stars

Star Light Simulator illuminates the search for life around the Milky Way’s most common stars

Italian researchers have demonstrated experimentally for the first time that microorganisms can photosynthesise using the infrared-dominated light emitted by the most common type of star in the Milky Way.  The results from the Star Light Simulator, presented at the Europlanet Science Congress (EPSC) 2022, suggest that life could develop around stars different from our Sun and produce oxygen-rich worlds that are habitable by more complex organisms.

Most stars in our Milky Way are the smallest type of hydrogen-burning star, known as red M-dwarfs. They are cooler and less luminous than our Sun and primarily emit light in the infrared and far-infrared, with very low emissions at visible wavelengths. Due to their abundance, many exoplanets have been found around M-dwarfs. However, whether or not these planets could support life has been the subject of much debate in recent years. 

The Star Light Simulator, built by a collaboration of teams from the National Institute for Astrophysics (INAF), the Institute of Photonics and Nanotechnology (IFN-CNR) and the Department of Biology in Padua, can generate light intensities and spectra at different ranges to reproduce the light for any star. For this experimental setup, the team recreated the emitted light from an M-dwarf along with an atmospheric simulator chamber that replicated an artificial planetary environment. 

“We initially focused on cyanobacteria since they have extraordinary capacities to withstand every environment on the Earth, as well as a known ability to survive in near-infrared light,” said Prof Nicoletta La Rocca of the University of Padua, who led the study. “When these acclimatised to the simulated environment, we extended our tests to mosses and various types of red and green microalgae.”

All the experiments were successful, with all the microrganisms demonstrating that they could grow and photosynthesise under M-dwarf light. 

Prof La Rocca commented: “Life as we know it depends on liquid water, so that is one of the major criteria for an exoplanet to be considered to be habitable. More complex terrestrial life forms also depend on oxygen. On Earth, photosynthesising cyanobacteria played a vital role in oxidising our atmosphere. The new experimental results extend our knowledge of potentially habitable environments and hence, where we might expect to find a planet harbouring complex life.”

FURTHER INFORMATION

The results have been submitted for publication in a special issue of the open-access Life journal in the special issue “Frontiers in Extremophiles: From Life at Edges on Earth to Space Exploration”.

La Rocca, N., Battistuzzi, M., Claudi, R., Cocola, L., and Poletto, L.: Responses of eukaryotic photosynthetic organisms to simulated M-dwarf star light. , Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-495, 2022.

https://meetingorganizer.copernicus.org/EPSC2022/EPSC2022-495.html

IMAGES

The Star Light Simulator (left) and illuminated (right). It has 25 channels in total, emitting light from 365 nanometres (UV light) to 940 nanometres (infrared light). Credit: La Rocca et al.

The Star Light Simulator (left) and illuminated (right). It has 25 channels in total, emitting light from 365 nanometres (UV light) to 940 nanometres (infrared light). Credit: La Rocca et al.
M-dwarfs stars display a very different range of properties compared to Sun-like stars, impacting the potential for life on planets orbiting those stars. Credit: T Roger/Europlanet 2024 RI

SCIENCE CONTACTS

Prof Nicoletta La Rocca
Department of Biology
University of Padua
nicoletta.larocca@unipd.it

CONTACTS

EPSC2022 Press Office
+44 7756 034243
epsc-press@europlanet-society.org

FURTHER INFORMATION 

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA

The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

Earth-like exoplanets unlikely to be another ‘pale blue dot’

Earth-like exoplanets unlikely to be another ‘pale blue dot’

When searching for Earth-like worlds around other stars, instead of looking for the ‘pale blue dot’ described by Carl Sagan, new research suggests that a hunt for dry, cold ‘pale yellow dots’ might have a better chance of success. The near balance of land-to-water that has helped life flourish on Earth could be highly unusual, according to a Swiss-German study presented at the Europlanet Science Congress 2022 in Granada. 

Tilman Spohn and Dennis Höning studied how the evolution and cycles of continents and water could shape the development of terrestrial exoplanets. Results from their models suggest that planets have approximately an 80 percent probability of being mostly covered by land, with 20 percent likely to be mainly oceanic worlds. Barely one percent of the outcomes had an Earth-like distribution of land and water.

“We Earthlings enjoy the balance between land areas and oceans on our home planet. It is tempting to assume that a second Earth would be just like ours, but our modelling results suggest that this is not likely to be the case,” said Prof Spohn, Executive Director of the International Space Science Institute in Bern, Switzerland.

The team’s numerical models suggest that the average surface temperatures would not be too different, with perhaps a 5° Celsius variation, but that the land-to-ocean distribution would affect the planets’ climates. An ocean world, with less than 10 percent land, would likely be moist and warm, with a climate similar to the Earth in the tropic and subtropic epoch that followed the asteroid impact that caused the extinction of the dinosaurs. 

The continental worlds, with less than 30 percent oceans, would feature colder, drier and harsher climates. Cool deserts might occupy in the inner parts of landmasses, and overall they would resemble our Earth sometime during the last Ice Age, when extensive glaciers and ice-sheets developed.

On Earth, the growth of continents by volcanic activity and their erosion by weathering is approximately balanced. Life based on photosynthesis thrives on land, where it has direct access to solar energy. The oceans provide a huge reservoir of water that enhances rainfall and prevent the present climate from becoming too dry. 

“In the engine of Earth’s plate tectonics, internal heat drives geologic activity, such as earthquakes, volcanoes and mountain building, and results in the growth of continents. The land’s erosion is part of a series of cycles that exchange water between the atmosphere and the interior. Our numerical models of how these cycles interact show that present-day Earth may be an exceptional planet, and that the equilibrium of landmass may be unstable over billions of years. While all the planets modelled could be considered habitable, their fauna and flora may be quite different,” said Prof Spohn.

Further information:

Spohn, T. and Hoening, D.: Land/Ocean Surface Diversity on Earth-like (Exo)planets: Implications for Habitability, Europlanet Science Congress 2022, Granada, Spain, 18–23 Sep 2022, EPSC2022-506, 2022. https://meetingorganizer.copernicus.org/EPSC2022/EPSC2022-506.html

Images

Terrestrial planets can evolve in three scenarios of land/ocean distribution: covered by lands, oceans or an equal mix of both. The land-covered planet is the most probable scenario ( around 80%), while our “equal mix” Earth (<1% chance) is even more unique than previously thought.

Modelling shows that the probabilities of three very-different looking types of terrestrial planets  (covered with land, ocean or an equal mix of both) vary widely, while highly impacting their climate and thus their habitability.
Modelling shows that the probabilities of three very-different looking types of terrestrial planets (covered with land, ocean or an equal mix of both) vary widely, while highly impacting their climate and thus their habitability. Credit: Europlanet 2024 RI/T. Roger.

Image showing the Earth from a distance of 6 billion kilometres, taken by the NASA Voyager 1 spacecraft in 1990. It has become iconic as the “pale blue dot”. The image was newly processed and released by NASA in 2020.  

Image showing the Earth from a distance of 6 billion kilometres, taken by the NASA Voyager 1 spacecraft in 1990. It has become iconic as the “pale blue dot”.
Image showing the Earth from a distance of 6 billion kilometres, taken by the NASA Voyager 1 spacecraft in 1990. It has become iconic as the “pale blue dot”. The image was newly processed and released by NASA in 2020. Credit:

Science Contacts

Prof. Tilman Spohn
International Space Science Institute
Bern, Switzerland 
tilman.spohn@issibern.ch

Media Contacts

EPSC2022 Press Office
+44 7756 034243
epsc-press@europlanet-society.org

Notes for Editors

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA

The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

When astronomy went virtual

When astronomy went virtual

Astronomy is a powerful tool to bring people closer to science – even in challenging times, such as those of the COVID-19 pandemic. The beauty of the night sky, the charm of distant and exotic phenomena, the continuous discoveries in space exploration: all of these elements intrigue the public, especially young people, promoting at the same time a sense of solidarity and union between people. 

Right from the beginning of the COVID-19 emergency, in fact, many professional and amateur groups have become involved with live streaming astronomical events to the general public. At the beginning, these events served as a way of providing sky watching and science outreach opportunities during the confinement conditions imposed by the pandemic. But now, they have become an extraordinary tool to share these topics with a wide audience spread over many countries around the world.

In order to reflect on some of the lessons learned from these initiatives, a Monday-evening session at EPSC2022 in Granada will bring together researchers and public outreach practitioners from across Europe.

The session will also look ahead to future celestial events — for example, an upcoming partial solar eclipse on 25 October  — and discuss how the astronomy community can capitalise on the opportunities they create.

The chairperson of the session is Graham Jones, an astrophysicist and science communicator at timeanddate.com, the world’s leading website for time and time zones, that has been broadcasting eclipses and transits since 2016.

The co-conveners of the session are Claudia Mignone, astrophysicist and science communicator at INAF, the Italian National Institute for Astrophysics, and Helen Usher, research student at the Open University in the UK who works with the Faulkes Telescope Educational Project and leads on the Comet Chasers education and outreach project.

The session at EPSC2022 will be held on 19 September at 17:30 CEST in Room Andalucia 3.

An online follow-up workshop is being planned for Wednesday, 23 November (starting at 13:00 CET) — anyone involved with providing astronomy live streams is invited to join this virtual session. Anyone interested is welcome to get in touch with Graham Jones via graham@timeanddate.com

Dazzling Views of Mars with JWST Presented Today at EPSC2022

Dazzling Views of Mars with JWST Presented Today at Europlanet Science Congress (EPSC) 2022

NASA’s JWST mission captured its first images and spectra of Mars on 5 September. The telescope, an international collaboration with the European Space Agency (ESA) and the CSA (Canadian Space Agency), provides a unique perspective with its infrared sensitivity on our neighboring planet, complementing data being collected by orbiters, rovers, and other telescopes. The images were presented today at a briefing at EPSC2022, and reported in a blog on the NASA website.

Videos

In an interview at EPSC2022, Dr Niamh Shaw spoke with the team behind the new images about their first glimpse of Mars with Webb.

Images

Webb’s first images of Mars, captured by its NIRCam instrument Sept. 5, 2022 [Guaranteed Time Observation Program 1415]. Left: Reference map of the observed hemisphere of Mars from NASA and the Mars Orbiter Laser Altimeter (MOLA). Top right: NIRCam image showing 2.1-micron (F212 filter) reflected sunlight, revealing surface features such as craters and dust layers. Bottom right: Simultaneous NIRCam image showing ~4.3-micron (F430M filter) emitted light that reveals temperature differences with latitude and time of day, as well as darkening of the Hellas Basin caused by atmospheric effects. The bright yellow area is just at the saturation limit of the detector. Credit: NASA, ESA, CSA, STScI, Mars JWST/GTO team.
Webb’s first near-infrared spectrum of Mars, captured by the Near-Infrared Spectrograph (NIRSpec) Sept. 5, 2022, as part of the Guaranteed Time Observation Program 1415, over 3 slit gratings (G140H, G235H, G395H). The spectrum is dominated by reflected sunlight at wavelengths shorter than 3 microns and thermal emission at longer wavelengths. Preliminary analysis reveals the spectral dips appear at specific wavelengths where light is absorbed by molecules in Mars’ atmosphere, specifically carbon dioxide, carbon monoxide, and water. Other details reveal information about dust, clouds, and surface features. By constructing a best-fit model of the spectrum, by the using, for example, the Planetary Spectrum Generator, abundances of given molecules in the atmosphere can be derived. Credit: NASA, ESA, CSA, STScI, Mars JWST/GTO team.

Final Media Invitation and Details of Media Briefings: Solar System Observations with Webb; Hera/Dart/LICIACube; Innovations in robotic exploration and visualisation techniques.

Final Media Invitation and Details of Media Briefings

Solar System Observations with Webb; Hera/Dart/LICIACube; Innovations in robotic exploration and visualisation techniques.

The 2022 Europlanet Science Congress (EPSC) will take place at the Palacio de Congresos de Granada, Spain, from 18-23 September 2022. The meeting this year will take place as a joint event with the European Astrobiology Network Association (EANA), bringing together planetary scientists and researchers working on the possibility of life beyond the Earth.

More than 1200 oral and poster presentations have been submitted and over 1000 planetary scientists from Europe and around the world have registered to attend the meeting. Media representatives are cordially invited to attend the EPSC2022 meeting. Media registration is free. Any bona fide media delegates can register by e-mailing epsc-press@europlanet-society.org.

PRESS BRIEFINGS:

To attend press briefings in-person, please make sure that you have received a TAN code waiver and registered as media for the meeting by emailing epsc-press@europlanet-society.org. To attend online, please follow the Zoom registration links below and you will receive a confirmation email containing information about joining the live stream.

Press Briefing on Monday, 19 September 2022

https://us02web.zoom.us/webinar/register/WN_l7De2qq1SBWBX9ETIfCQcg

The press briefing on Monday, 19 September will cover two topics. The Zoom link is the same for both.

ESA Hera Mission: Investigating binary asteroid (65803) Didymos and the DART crater 
14:15 CEST / 13:15 BST / 08:15 EDT

One week ahead of the impact by NASA’s Double Asteroid Redirection Test (DART) spacecraft with the asteroid Dimorphos, representatives of the European Space Agency’s Hera mission, the Italian LICIACube mission and DART will present an update for the media.

Speakers:

  • Michael Küppers, Hera Project Scientist, European Space Astronomy Centre
  • Andy Rivkin, DART Investigation Team Lead, Johns Hopkins University Applied Physics Laboratory
  • LICIACube Team representative (TBC)

Solar System Observations with Webb 
15:00 CEST / 14:00 BST / 09:00 EDT

Speakers:

  • Giuliano Liuzzi, NASA Goddard Space Flight Center
  • Sara Faggi, NASA Goddard Space Flight Center
  • Ann-Carine Vandaele, Institut royal d’Aeronomie Spatiale de Belgique
  • Geronimo Villanueva, NASA Goddard Space Flight Center,

Press Briefing on Wednesday, 21 September 2022

https://us02web.zoom.us/webinar/register/WN_ubhgAGj_RqOJ17o_6ppFug

Exploring the planets: Innovations in robotic exploration and visualisation techniques.
14:00 CEST / 13:00 BST / 08:00 EDT

Speakers:

  • Sebastian Walter, FU Berlin
  • Patrick Bambach, Max Planck Institute for Solar System Research
  • Gerald Eichstäd, Citizen Scientist

Any updates to the line-up of speakers will be published on this page.

Details of the scientific sessions and the presentation abstracts can be found at the official website: https://www.epsc2022.eu/

An overview of the programme can be found here

CONTACTS

Anita Heward
EPSC2022 Press Officer
+44 7756 034243
aheward@europlanet-society.org
epsc-press@europlanet-society.org

Adriana Postiglione
EPSC2022 Press Officer
epsc-press@europlanet-society.org

FURTHER INFORMATION 

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA

The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

Get creative with Europlanet’s #InspiredByOtherWorlds arts contest 2022

Get creative with Europlanet’s #InspiredByOtherWorlds arts contest 2022

See the winning entries for #InspiredByOtherWorlds 2022!

The Europlanet Science Congress (EPSC) 2022 is inviting schools  and space enthusiasts of all ages to get creative and share their artworks and performances inspired by other worlds in a contest called #InspiredByOtherWorlds.

The theme this year is ‘Interception’

Gallery of Entries

WordPress Photo Gallery Plugin

About the contest

With missions like ArtemisComet InterceptorDART and LICIACube in the headlines, this year’s contest looks at ideas around meeting, moving and impact in relation to planetary exploration!

Art is meant to inspire. Art is meant to be shared. Art allows us to go beyond our limits. Planetary science takes us beyond the limits of our world. What happens when a passion for art and a passion for exploring planets and other worlds meet? Let your imagination take us on a voyage through our Solar System and planets around distant stars! Show us how you have been inspired to create drawings, storytelling, pictures, videos, models, craft works or art installations at home. 

The deadline for the competition has been extended to 15 December 2022. Late submissions will not be accepted.

Early entries for #InspiredByOtherWorlds submitted by 22 September 2022 were showcased on digital screens at the conference centre and during the closing ceremony of EPSC2022. 

All artworks submitted will be judged by a panel of planetary scientists and artists. The winning artworks or performances will be shared via the Europlanet website, newsletters and social media and will be used to inspire young people in future Europlanet outreach activities.

So keep creating! 

Rules

For all the information about the contest, see the #InspiredByOtherWorlds FAQ page. If you’d also like to share on social media please use the hashtags #InspiredByOtherWorlds #EPSC2022.

#InspiredByOtherWorlds 2022 contest banner
#InspiredByOtherWorlds 2022 contest banner

If you have any questions, please contact stavro.ivanovski@inaf.it .

Enter the contest

EPSC2022, 18 – 23 September 2022: 1st Media Announcement

EPSC2022, 18 – 23 September 2022: 1st Media Announcement

The 2022 Europlanet Science Congress (EPSC) will take place at the Palacio de Congresos de Granada, Spain, from 18-23 September 2022. The meeting this year will take place as a joint event with the European Astrobiology Network Association (EANA), bringing together planetary scientists and researchers working on the possibility of life beyond the Earth.

EPSC2022 covers the full spectrum of planetary research and technology across more than 60 scientific sessions, with topics including current and upcoming missions, international collaborations, space weather influencing Earth, planet formation, the role of impacts, and astrobiology. The programme this year is supplemented by keynotes, debates, morning briefings and community events, including a multi-agency panel dialogue on Venus exploration. More than 1200 oral and poster presentations have been submitted and over 1000 planetary scientists from Europe and around the world are expected to attend the meeting.

EPSC2022 will take place largely as an in-person meeting, without the possibility of live virtual participation in the standard scientific sessions. However, scientific sessions will be recorded and made accessible for registered meeting participants and members of the Europlanet Society. 

Press briefings will be livestreamed and press notices on presentations of interest to the media will be issued by the EPSC2022 Press Office during the meeting. Details of press briefings and webcast access will be circulated closer to the time.

Details of the scientific sessions and the presentation abstracts can be found at the official website: https://www.epsc2022.eu/

An overview of the programme can be found here

The detailed programme can be found here.

The meeting hashtag is #EPSC2022.

MEDIA REGISTRATION

Media representatives are cordially invited to attend the EPSC2022 meeting. Media registration is free. Any bona fide media delegates can register by e-mailing epsc-press@europlanet-society.org.

CONTACTS

Anita Heward
EPSC2022 Press Officer
+44 7756 034243
aheward@europlanet-society.org
epsc-press@europlanet-society.org

Adriana Postiglione
EPSC2022 Press Officer
epsc-press@europlanet-society.org

FURTHER INFORMATION 

About the Europlanet Science Congress (EPSC) 

The Europlanet Science Congress (https://www.epsc2022.eu/) formerly the European Planetary Science Congress, is the annual meeting of the Europlanet Society. With a track record of 16 years, and regularly attracting around 1000 participants, EPSC is the largest planetary science meeting in Europe. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.

Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2022.

About Europlanet

Since 2005, Europlanet (www.europlanet-society.org) has provided Europe’s planetary science community with a platform to exchange ideas and personnel, share research tools, data and facilities, define key science goals for the future, and engage stakeholders, policy makers and European citizens with planetary science. 

The Europlanet 2024 Research Infrastructure (RI) has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149 to provide access to state-of-the-art research facilities and a mechanism to coordinate Europe’s planetary science community. 

The Europlanet Society promotes the advancement of European planetary science and related fields for the benefit of the community and is open to individual and organisational members. The Europlanet Society is the parent organisation of the Europlanet Science Congress (EPSC).

About EANA

The European Astrobiology Network Association (http://www.eana-net.eu), joins together people interested in the origins of life and the search for extraterrestrial life in the Solar System and beyond. This interdisciplinary domain involves scientists from multiple disciplines such as chemistry, physics, biology, geology, astronomy, and human sciences.  

EPSC2022 Social Media and Media Internships – Call for Applications

EPSC2022 Social Media and Media Internships – Call for Applications

We’re offering paid in-person internships to support applicants in developing social media and science communication skills. Interns will join the communications team for the Europlanet Science Congress (EPSC), the largest annual planetary science meeting in Europe. EPSC2022 will take place in Granada, Spain, from 18-23 September.

Social Media Internships

Successful applicants for the social media internship will support the social media team in covering live sessions during the EPSC2022.

Media Internships

Successful applicants for the media internship will support the press office team in preparing materials for the media.

About EPSC2022

EPSC2022 covers a broad area of science topics related to planetary science and planetary missions. EPSC will this year be jointly organized with the annual EANA (European Astrobiology Network Association) Conference 2022, and will therefore include a large number of sessions with an astrobiology focus. The programme of the congress will contain oral and poster sessions, as well as workshops and panel discussions and provide opportunities for interaction between the participants. EPSC2022 will take place as an in-person meeting.

Apply

If you are interested in taking part in the social media or media internship programme, please complete the application form below.

The deadline for applications is now closed.

Shortlisted applicants may be contacted for a short interview with the EPSC Communications team via Zoom. Successful applicants will be notified by the end of July. Successful applicants will be paid €750 (as well as travel, accommodation and sustenance costs) and will be required to attend the meeting from Monday 18 – Friday 23 September.

If you have any questions, please contact the Europlanet 2024 RI Communications Manager, Anita Heward.

Download the flyer.

EPSC2022: Call for Abstracts

Europlanet Science Congress (EPSC) 2022

Palacio de Congresos de Granada, Spain | 18–23 September 2022 

The world-wide community of planetary scientists is invited to submit an abstract for presentation of their recent work at the Europlanet Science Congress (EPSC) 2022, which will take place at Palacio de Congresos de Granada, Spain, 18–23 September 2022. 

EPSC will be jointly organized with the annual EANA (European Astrobiology Network Association) Conference 2022. 

We are looking forward to meeting everyone in person this year in Granada. The ethos for EPSC2022 is to create a simple, flexible, and inclusive meeting that provides multiple opportunities for interaction, scientific discussion, and networking. The programme of the congress will contain oral and poster sessions, as well as workshops and panel discussions. 

The current list of sessions is organized around the following Programme Groups: 

  • Terrestrial Planets (TP) 
  • Outer Planet Systems (OPS) 
  • Missions, Instrumentation, Techniques, Modelling (MITM) 
  • Small Bodies (comets, KBOs, rings, asteroids, meteorites, dust) (SB) 
  • Exoplanets, Origins of Planetary Systems and Astrobiology (EXOA) 
  • Outreach, Diversity, Amateur Astronomy (ODAA) 

The scientific programme and the abstract submission tool are accessible at this link>>

Please browse the list of sessions and identify the session that most closely matches your area of interest; your abstract can be submitted directly to that session. 

You may see all deadlines & milestones of the conference at this link >>

Information on registration and social events, as well as a separate online request form for requesting splinter meetings & workshops, will also be available soon on the meeting website. 

Please forward this message to colleagues who may be interested.  

We look forward to seeing you in Granada!

With best wishes, 

Lena Noack & Nigel Mason 
on behalf of the EPSC Executive Committee 

Stavro Ivanovski & Ákos Kereszturi  
on behalf of the Scientific Organizing Committee 

Mario Ebel 
on behalf of Copernicus Meetings 

#InspiredByOtherWorlds: the winners are…

#InspiredByOtherWorlds Arts contest 2021: the winners are…

The winning artworks for the #InspiredByOtherWorlds Arts Contest 2021 were announced during a virtual award ceremony on 20th December. The winners are listed below. Many congratulations to all the winning artists and thanks to all participant for their submissions.

Youth, Adult and Group Winners

View all the entries to the contest.

Youth Category

Adult Category

Group Category


Awards Ceremony

An awards ceremony was held on Monday 20th December. Download the full presentation.

Back to #InspiredByOtherWorlds Contest main page