22-EPN3-041: Study of the Dust Lifting Phenomena and Electrification Processes in a Martian Analogue Site

22-EPN3-041: Study of the Dust Lifting Phenomena and Electrification Processes in a Martian Analogue Site

Visit by Gabriele Franzese (INAF-OACN, Italy) and Hezi Yizhaq (Ben-Gurion University of the Negev, Israel) to TA1.5 Makgadikgadi Salt Pans (Botswana).
Dates of visit: 24 July – 02 August 2023

We performed a field campaign in the Makgadikgadi Salt Pans, during the dry season, to study the local dust lifting events and test a space designed dust sensor. With these purposes, we deployed a fully equipped meteorological station with the addition of a camera system and of the MicroMED sensor, the Optical Particle Counter selected on board of the ExoMars programme to characterise in situ the martian airborne dust. Here we used the terrestrial version of MicroMED, fully representative of its Martian counterpart.

We spent one week between two sites, facing different soil and wind conditions and successfully achieving both aspects of the campaign. MicroMED was indeed able to automatically operate using a preloaded acquisition schedule during day and night, in a range going from clear to highly loaded dust conditions. The campaign has hence been truly representative of the martian expected scenario and the
data will be useful for further tuning the sensor and its functioning pipeline. Moreover, MicroMED acquisitions are precious also for studying the dust lifting events, in combination with all the other installed sensors. We were indeed able to monitor two days of intense dust devil activity, performing also an image survey of the events. The acquired data are promising, being under various aspects totally new to the literature. They can hence lead to highly improve our knowledge of the dust lifting phenomenon, regarding in particular the induced electric field

Read the full scientific report with kind permission by Gabriele Franzese.


22-EPN3-026: Life detection and biosignature preservation studies via lipid biomarker analysis in Makgadikgadi Salt Pan

22-EPN3-026: Life detection and biosignature preservation studies via lipid biomarker analysis in Makgadikgadi Salt Pan

Visit by Pablo Finkel and Laura Sánchez García (Centro de Astrobiología (CAB), CSIC-INTA, Spain) to TA1.5 Makgadikgadi Salt Pans (Botswana).
Dates of visit: 02-09 October 2023

In large evaporitic basins such as the Makgadikgadi Salt Pans in Botswana, a series of strategies that promote the long-term preservation of lipids take place in its immediate subsurface: protective mineral-organics interactions, halite encapsulations within matrices, salt-derived enzymatic inhibition, cellular adaptations, and entombment by chemical precipitation of minerals. These strategies, plus the high preservation potential of lipid biomarkers, crafts a recipe for optimism in regard to the state of the lipids found in Makgadikgadi, whose degradation may be effectively attenuated as their preservation is enhanced.

The main goal of this project was to collect different types of samples from the pans to characterise their lipid biomarker content to a) identify biological (molecular and isotopic) features and b) to assess lipid preservation and/or degradation. Samples with protective matrices suitable for organics preservation include halite crusts, xero-mineral matrix and silcretes from Sua Pan, as well as silcretes, calcretes and mineral precipitates found in inverted channels from a relict delta. More humid samples where these protective features may lack included surface and subsurface soil samples from concentric layered mounds believed to have formed under a water table. Nonethless, these mounds present a geomorphological analogy to the Equatorial Layered Deposits (ELD) on Mars, and given the infiltrating capillary fringe that render the Makgadikgadi mounds humid, a similar process on Mars could establish the ELDs as habitable refugia. In the laboratory, once the lipid profile of all samples is characterised, the team will proceed with irradiation studies to challenge lipid degradation in protective versus non-protective matrices.

Read the full scientific report with kind permission by Pablo Finkel and Laura Sánchez García.


22-EPN3-024: VIS-NIR and Raman measurement of clays and evaporitic products as analogs of Oxia Planum in the framework of the Rosalind Franklin rover mission

22-EPN3-024: VIS-NIR and Raman measurement of clays and evaporitic products as analogs of Oxia Planum in the framework of the Rosalind Franklin rover mission

Visit by Marco Ferrari and Mauro Ciarniello (INAF-IAPS, Italy) to TA1.5 Makgadikgadi Salt Pans (Botswana).
Dates of visit: 11-17 September 2023

This project aimed at a sampling campaign of evaporite and sedimentary products (e.g., sulfates, clays) and deposits showing evidence of biosignatures in the Makgadikgadi Salt Pans, Botswana. Samples taken from this location will be used for VIS-NIR and Raman spectroscopy measurements in the context of the future ExoMars mission.

To achieve this, the team visited 10 different sites in the Makgadikgadi Pan area, distributed across both the Ntwentwe Pan and Sue Pan during the visit. They collected 35 samples in different forms, both loose sediments with grain sizes varying from clays to sand, and cohesive sediments such as the salt crusts that characterise the top surface of the Pan. They also collected some solid rock blocks with sizes suitable for the laboratory setup of the Ma_MISS (Mars Multispectral Imager for Subsurface Studies) instrument (i.e. blocks with a maximum size of 10x10x10 cm), to perform drilling operations and spectroscopic measurements in the wall of the borehole.

The campaign aimed to confirm the ability of the Ma_MISS instrument to detect spectral signatures of organic substances in geological samples containing biosignatures. With the spectroscopic data obtained in the laboratory on the collected samples, the team aims to build a spectral database that will be useful to the scientific community.

These activities on terrestrial analogues have proven useful for understanding life in extreme conditions and how these can be preserved in the form of biosignatures and detected by the scientific instruments that will be on board future missions to Mars. In addition, this work will help to acquire crucial preparation for the exploitation and interpretation of the scientific data that the Ma_MISS instrument will provide during the active phase of the mission.

Read the full scientific report with kind permission by Marco Ferrari and Mauro Ciarniello.


22-EPN3-070: Investigation of geomorphic features in Ntwetwe pans, Makgadikgadi Basin, Botswana

20-EPN3-70: Investigation of geomorphic features in Ntwetwe pans, Makgadikgadi Basin, Botswana, using Ground Penetrating Radar: implications for Matrial surface landforms

Visit by Mebatseyon Shawel (Addis Ababa University, Ethiopia) to TA1.5 Makgadikgadi Salt Pans (Botswana).
Dates of visit: 06-13 July 2023

The Makgadikgadi Basin in Botswana, covering an area of 16,000 square kilometres, is the largest salt pan in the world. Its formation is related to a tectonic episode in the Tertiary, possibly linked to the East African Rift System (EARS), which caused the subsidence and infilling with water and sediments. Changes in climate and tectonics eventually led to the drying up of the ancient lake, leaving behind the expansive salt pans we see today. The basin consists of two major pans, namely Sua and Ntwetwe, with a combined area of approximately 8,400 square kilometres. These pans are mostly flat but feature distinct geomorphic elements such as mounds and shoreline features that can be easily identified through satellite imagery. In the western part of the Ntwetwe pan, there are numerous mounds with an east-facing convex side and an average height of 5 metres. These mounds are primarily composed of fine-grained sands, calcareous sand, and occasionally contain bivalve shells. While several theories have been proposed regarding their origin, the internal sedimentary structure of these geomorphic features remains unknown.

On Mars, conical mounds are significant morphological features that have been observed and mapped in various regions. The Noachian-Hesperian climate change on Mars resulted in the deposition of crudely layered sediments in the equatorial region, where fluctuations in groundwater played a crucial role. These layered sediments, known as Equatorial Layered Deposits (ELDs), contain numerous mounds that were exposed due to impact craters. The objective of this study is to investigate the mounds in the Ntwetwe pan using geophysical methods, particularly Ground Penetrating Radar (GPR). By employing GPR, we aim to image the internal structure of these mounds and other geomorphic features, with the ultimate goal of understanding the formation and preservation of similar structures on the Martian surface.

Several sites within the Ntwetwe pan were selected for GPR survey, primarily along east-west and north-south profiles. These sites are located in the northwest, northeast, and central parts of the pan. Over a period of six days, approximately 23 kilometres of GPR data were collected. Most of the surveys utilized 50MHz antennas, while three lines were acquired using both 50MHz and 30MHz antennas to attain penetration depth as well as resolution. Preliminary results indicate clear imaging of the top 15 meters over the mounds and delta sites. However, reflections away from these structures appear to be weaker,
possibly due to the high moisture content of clays on the pan floor, requiring further processing works to achieve better results.

Read the full scientific report with kind permission by Mebatseyon Shawel.


22-EPN3-105: At the interface of ice and water on Mars

22-EPN3-105: At the interface of ice and water on Mars – Insights from Western Greenland.

Visit by Anna Grau Galofre (CNRS/Laboratoire de Planétologie et Géosciences, France) and Axel Nobletto (Western University, Canada) to TA1.4 AU Greenland Kangerlussuaq Field Site (Greenland).
Dates of visit: 25 July – 02 August 2023

Report Summary: The aim of this project was to investigate elements of the glacial and periglacial system surrounding Kangerlussaq, Western Greenland, to then compare them to similar landforms on the surface of Mars.

The first target in the field focused on investigating former subglacial drainage pathways that would have transported and accumulated water under the western Greenland ice sheet (GIS). Preliminary field observations, consisting of field and UAV imagery, mapping of former ice flow directions and sediment analyses, identified sets of bedrock incised depressions, linked by shallow channels that often cross drainage divides, point at a former subglacial drainage setting consisting of interlinked subglacial cavities. These observations would be consistent with present day radar observations of drainage
pathways under the western GIS margin near Kangerlussuaq. Beside their interest for understanding the geometry of current subglacial drainage under Greenland, interlinked subglacial cavities are also interesting analogues to the martian so-called fresh shallow valleys, which are suggested to have formed under former ice cover.

The second field objective investigated polygonal terrain, its morphology, distribution, and the connection with the depth to the ice layer. We studied polygonised terrains around Kangerlussuaq, collecting image data, structure-from-motion, and depth to the ice layer. We also mapped the distribution of polygonal terrain as observed in the field and aerial imagery.

The results and interpretations will be applied to the study of Martian polygons, to propose a model of the buried ice conditions for Mars’ permafrost, and the development of channel systems.

Read full scientific report with kind permission by Anna Grau Galofre.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

22-EPN3-049: Retrieving multiple ice cores to study the link between the solar cycle and the cosmogenic tritium in precipitation

22-EPN3-049: Retrieving multiple ice cores covering the last 100 years to study the link between the solar cycle and the cosmogenic tritium in precipitation.

Visit by László Palcsu and Marjan Temovski (Institute for Nuclear Research, Hungary) to TA1.4 AU Greenland Kangerlussuaq Field Site (Greenland).
Dates of visit: 19-23 June 2023

Report Summary:

The objective of the mission was to retrieve multiple ice cores at the EGRIP site (75°37′N, 35°59′W, 2702 m a.s.l.) to study the natural as well as anthropogenic variation of tritium in the ice layers. We have studied the recent publications, which suggest lower snow accumulation rate than what we have previously thought. Therefore, we intended to drill more shallow cores. During five days at EGRIP (19-23 June 2023), we drilled five 24 m-long ice cores representing the last 100-110 years. The ice cores were cut into subsamples of 15 cm, and packed into plastic containers. One full core was collected. The bottom part (depth between 16.2 and 24.0 m) of the additional 4 cores was also collected to get more material for sensitive analysis of tritium by the 3He-ingrowth method.  Altogether 368 samples have been collected. Besides the cosmogenic tritium, stable isotopes of water, and Sr-Nd-Hf isotope signatures will be also analysed. To compare this latter to older ice (>10,000 years), we took ice samples at the ice margin in a location between the glaciers Isunnguata Sermia and Russell about 36 km from Kangerlussuaq, near Point 660. The ice there is supposed to be around 40,000 years old. We drilled a shallow core (~ 4 m), cut into 10 pieces, and stored in pre-cleaned plastic vessels. All of the ice samples have been already shipped to our laboratory in Hungary. The first analyses for stable isotopes, 137Cs around the Chernobyl event, and tritium around the bomb-peak have been already started.

Drilling down to 24 m in the clean area of the EGRIP site, Kangerlussuaq,
Drilling down to 24 m in the clean area of the EGRIP site, Kangerlussuaq, Greenland. Credit: László Palcsu.

Read full scientific report with kind permission by László Palcsu.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

22-EPN3-126: In-Situ observations in support for VERITAS Venus analogue airborne radar campaign at Holuhraun and Djyngasandur, Iceland

22-EPN3-126: In-Situ observations in support for VERITAS Venus analogue airborne radar campaign at Holuhraun and Djyngasandur, Iceland

Solmaz Adeli and Stephen Patrick Garland (German Aerospace Center (DLR), Germany) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 1-14 August 2023

The composition of lava fields on Venus and their alteration state is poorly understood. The Venus Emissivity Mapper (VEM)/VERITAS will observe the surface of Venus in the NIR range, which will allow studying the spectral characteristics of the Venusian surface, as well as the type of lava and likely alteration processes. To prepare for this mission, VERITAS organised a field campaign in Iceland in early August, 2023, which included in-situ NIR data acquisition by the DLR-Berlin team, enabled through this Europlanet funding. The main goals have been 1) to understand the in-situ NIR reflectance spectral response of Venus analogue material, 2) to acquire in-situ emittance of an active volcano in the NIR spectral range, 3) to collect samples to be analysed in the Planetary Spectroscopy Laboratory (PSL-DLR-Berlin) using reflectance and emittance spectroscopy methods, to create an emissivity spectral library, and 4) to compare the laboratory data with field measurements.

In order to collect a wide range of textures (from pahoehoe to a’a) and compositional variations of basaltic lava fields, in addition to different fumarolic deposits, the team visited and imaged the Holuhraun lava field, Askja lava field, and Fagradalsfjall area. These sites offer an age range from the altered 1960 Askja lava field to the 2023 eruption in Fagradalsfjall. The Askja and Holuhraun sites also offered variation in grain sizes and tefra and sand coverage, which affects the spectral behavior of the surface material in NIR. the team also collected about 60 kg of samples to be analysed in the Venus chamber of the PSL-DLR-Berlin.

Photos from the campaign can be found in the DLR Flickr Album: VERITAS – Expedition for NASA & ESA Missions to Venus:

VERITAS

22-EPN3-129: In-situ and laboratory spectroscopic characterisation of Icelandic lava flows

22-EPN3-129: In-situ and laboratory spectroscopic characterisation of Icelandic lava flows; an analogue of Venus – VERITAS mission preparation

Nils Mueller and Akin Domac (German Aerospace Center (DLR), Germany) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 1-7 August 2023

As part of collaborative field work of the VERITAS science team, Nils Mueller and Akin Domac visited several locations with partially sediment covered lava flows in the vicinity of Askja, Vatnajokull National Park, Iceland. This was done simultaneously with an airborne radar campaign by the German Aerospace Center {DLR. e.V.) acquiring synthetic aperture radar images at X- and S-band, the wavelengths of the radar instruments on the Venus orbiters VERITAS and Magellan, respectively. The objective of the field­work was to document the nature and extend of sediment cover on lava flows and how it affects scattering and roughness at radar wavelengths. This will improve the combined Magellan/VERITAS SAR image interpretation by providing in-situ data that can be tied to specific S and X band backscatter values. Another aspect is change detection as the same airborne radar collected data of the near pristine Holuhraun lava flow in 2015.

The field work data collected includes photos, notes, LIDAR scans of SxS m2 patches, and clast and sediment samples from the the surface and, if possible, from 20 cm depth. The initial observations show that parts of the Holuhraun lava flow have been significantly modified by aeolian sediments in the 8 years since the end of the eruption. These sediments affect the roughness on radar wavelengths but also radar backscatter via changes in composition, density, clast size, and water content. Whether the changes are notable in the radar images remains to be seen, as the interpretation is ongoing.

Photos from the campaign can be found in the DLR Flickr Album: VERITAS – Expedition for NASA & ESA Missions to Venus:

VERITAS

20-EPN2-071: Deposition of organic matter as a factor controlling microbial colonisation of analogue terrestrial surfaces

20-EPN2-071: Deposition of organic matter as a factor controlling microbial colonisation of analogue terrestrial surfaces

Tina Santl-Temkiv (Aarhus University, Denmark) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 29-30 June 2023

This project was designed to improve the understanding of biosignatures in analogue terrestrial surfaces, volcanic rocks, that result as a consequence of microbial colonisation and weathering. During the visit, the automatic medium-volume sampling system PNS DM — modified to run on batteries charged with solar panels — was assembled, tested, and calibrated in the laboratory of Matis.

Due to a delay in shipment of the solar panels, the installation of the system at the field site could not be performed but will be finalised by the host institution in the near future. As a part of the visit, the area of the Fagradalsfjall volcano was visited and the location where the sampling system will be installed was discussed. Once the sampler system will be installed in proximity of the Fagradalsfjall volcano crater, aerosol samples will be collected continuously for a year along with replicate rock samples in order to investigate the impact of aerosol deposition on rock microbial community assembly, using microbial, chemical and physical analysis. This will be performed in collaboration between the team of Prof. Viggó Þór Marteinsson and the team of Assoc. Prof. Tina Santl-Temkiv and will result in greatly improved understanding of colonisation, community assembly, and biosignature emergence in analogue terrestrial surfaces.

Read the full scientific report with kind permission by Tina Santl-Temkiv.

Banner image: Iceland’s Fagradalsfjall volcano. Credit: CC BY-SA 4.0 Mokslo Sriuba


22-EPN3-007: SeisChem – The influence of seismic events on fluid and gas chemistry at the Icelandic planetary field site

22-EPN3-007: SeisChem – The influence of seismic events on fluid and gas chemistry at the Icelandic planetary field site

Visit by John Edgar and Jon Telling (Newcastle University, UK) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 12-21 September 2023

Measurable H2 can be generated during active seismicity through the reaction of water with freshly created rock surfaces. Field measurements have shown that rock-water reactions during seismic events can also lead to significant changes in the pH and increase the concentration of H2O2 in geological fluids. Whilst prior studies have investigated locations representing felsic crust, a large proportion of the deep biosphere resides in basaltic terrains. H2O2 generated through rock-water reactions is greater in basaltic rocks and enhanced when temperatures exceed ~80 °C. Importantly, these elevated temperatures overlap the growth ranges of some hyperthermophilic microorganisms. The generation of H2O2 in these environments represents an understudied energetic window of opportunity for extant microbial life, and possibly for the origins of life on Earth.

This project sampled a seismically active hydrothermal area in Iceland where elevated temperatures were anticipated to lead to enhanced H2O2 generation from rock-water reactions.
The SeisChem team investigated the relationship between seismicity and the products of rock – water reactions in a geologically active hydrothermal system. The central objective of SeisChem was to bridge a knowledge gap between laboratory studies and field measurements by:

  • Sample fluid and gas in time series, recording in-situ H2O2 and ancillary geochemical data
  • Store and return samples to the laboratory for H2 (g) and major ion (aq) analyses
  • Compare and contrast field and laboratory data with local seismic activity.

Read the full scientific report with kind permission by John Edgar and Jon Telling.


22-EPN3-130: Biosignatures in Icelandic geothermal aerosols

22-EPN3-130: Biosignatures in Icelandic geothermal aerosols

Visit by Mark Fox-Powell and Ben Stephens (Open University, UK) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 23-31 August 2023

The aim of our project was to capture and study microscopic aerosols ejected from bubbling geothermal springs in Iceland, as an analogue for the formation of cryovolcanic plumes at icy moons such as Enceladus. This project built on a successful Europlanet-funded field campaign in 2022. Our objectives in 2023 were to (i) comprehensively map size-dependent aerosol fluxes with increasing distance and elevation from the springs; and (ii) to collect simultaneous samples for microbiological and elemental analyses at multiple downwind locations.

We focused our investigations on Olkelduhals hot springs, near Hverageroi, where a pool with circum-neutral pH supporting thick microbial streamers experiences constant moderate gas flux. Our data from 2022 showed that this spring is a prolific and constant source of aerosols. We found that downwind aerosol size distributions changed with distance and with elevation from the spring. Four complete aerosol sample sets were taken downwind of the spring; each requiring a full field day. A background (upwind) air sample was also taken. Comprehensive samples for geochemical and microbiological analyses were taken from the spring, along with the collection of volatile and semi-volatile organic compounds using thermal desorption tubes. The sample set will form the basis of a new PhD studentship, beginning in October 2023 at the Open University, which will investigate the chemical composition, biomass content and microbial diversity of aerosols, and the volatile profiles of geothermal gases. Our data will provide the first insights from natural analogues into the formation of aerosols within cryovolcanic plumes.


22-EPN3-116: Fault Scaling at Southwest Iceland

22-EPN3-116: Fault Scaling at Southwest Iceland

Visit by Işık Su Yazıcı (German Aerospace Center DLR, Germany) and Sebastian Sturm (University of Freiburg, Germany) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 02-10 August 2023

Fault population studies reveal the lithospheric stress and strength conditions. Geometric fault properties provide insights into mechanical and temporal evolution of fault systems, as well as past and future potential for seismic energy release. Understanding the displacement-length relationship of faults can also help to estimate the current seismicity level. Improved constraints on the current seismicity of Mars based on lnSight mission results, are the motivation for a renewed and detailed analysis of martian fault systems. Partly due to the limited number of reliable datasets, data on the relationships between fault displacement and length of extraterrestrial bodies are scarce. Using Digital Elevation Models (OEM) and corresponding orthoimages derived from High Resolution Stereo Camera (HRSC) data, we previously obtained information on the displacement distribution along faults and the maximum displacement (Dmax) at the Memnonia Fossae (MF) fault system on Mars.

The volcanic rifting zone in SW Iceland displays similar characteristics as MF. Specifically, the availability of airborne HRSC data (HRSC-AX) of an area characterized by widespread normal faults in the rift zone at Thingvellir, and well-exposed faults in Reykjanes, are exceptionally well-suited sites as analogues for the MF. Considering the scarcity of terrestrial analogue work complementing the analysis of planetary fault scaling, this field work helps to improve our understanding of fault scaling relationships: Our goal is to combine terrestrial remote sensing data (HRSC-AX) with ground truth to obtain a better basis for evaluating planetary fault scaling (which relies on remote sensing only).

Read the full scientific report with kind permission by Işık Su Yazıcı.

Examples of faults in SW Iceland.
Examples of faults in SW Iceland. Credit: Işık Su Yazıcı.

22-EPN3-061: Analogue Studies to Test the Scientific Potential of the First SERS Prototype Analysis

22-EPN3-061: Analogue Studies to Test the Scientific Potential of the First SERS Prototype Analysis

Marco Veneranda and Guillermo Lopez-Reyes (University of Valladolid, Spain) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 24-30 July 2023

Iceland provides access to a great variety of environments that are widely considered potential analogues of hydrothermal processes on Mars). Previous investigation revealed a wide variety of microbial communities proliferating at the water side of Krysuvik and Hveradalir hydrothermal systems. Although providing crucial information on the dynamics of extremophilic life, the lack of low altered mineralogical samples prevented from: 1) fully comprehend the hydrothermal weathering dynamics of the primary rock (extrusive Fe-rich basaltic lava), and 2) determine the relation between microbial proliferation and the degree of hydrothermal alteration of the hosting mineral substrate. 

As these two aspects are of key importance to understand the habitability potential of the ancient hydrothermal systems found on Mars, Marco Veneranda and Guillermo Lopez Reyes performed a new campaign of analysis to address these two topics. On one hand, the two researchers investigated the mineralogical composition of the two analogue sites by using a portable emulator of the RLS Raman spectrometer onboard the ESA/ExoMars rover. Afterwards, a novel device for the automated synthesis of SERS nanoemulsions was used to investigate the organic content of the hydrothermal waters. The obtained results were then used to select optimal geological and biological samples to be returned in the laboratory for further investigation. As a whole, this research project aims at supporting the RLS team in defining and optimizing the potential scientific outcome of the RLS instrument once it will be operated on the surface of Mars.

Read the full scientific report with kind permission by Marco Veneranda and Guillermo Lopez-Reyes.

Molecular analysis performed in-situ by using a portable Raman spectrometer at the hydrothermal areas of Krýsuvik and Hveradalir.
Molecular analysis performed in-situ by using a portable Raman spectrometer at the hydrothermal areas of Krýsuvik and Hveradalir. Credit: M Veneranda.

22-EPN3-011: Phototrophic Microorganisms in Cold Deserts of Iceland

22-EPN3-011: Phototrophic Microorganisms in Cold Deserts of Iceland – Ecology and Diversity of Potential Analogues

Visit by Daniel Remias (University of Salzburg, Austria) and Lenka Procházková (Charles University, Czech Republic) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 07-13 July 2023

Geology and climate of inland regions at Iceland are ideal prerequisites for exploring microbial adaptation to cold and dry habitats. Bare terrestrial ground surfaces and high­altitude melting snowfields represent niches at the edge of life on Earth. Soil samples were harvested at altitudes from almost at sea level up to more than 1000 m. Additionally, red snow caused by cryoflora (snow algae) from permanent snow packs in the Kerlingarfjoll Mountains were collected, and photosynthetic uptake rates were measured in situ with labelled carbon (13C). Red snow was transported to the lab and the pigments extracted and the UV-protecting pigments characterized by HPLC.

The main aim of the project was the molecular characterisation of the phototrophic microbial community for evaluation of abundance and diversity of terrestrial and frozen habitats. Barren, desert­like sites were compared with vegetated ones. Microalgae marker DNA were extracted with dedicated kits for environmental soil samples.

This study aims to shed light on how photoautotrophic microbial life could work at Earth analogues with similar or even worse climatical or soil conditions. Finally, Icelandic terrestrial microalgae will be tested as potential analogues compared to other worlds like Mars or icy moons.

Read the full scientific report with kind permission by Daniel Remias and Lenka Procházková.

Image credit: Desert-like sampling site close to Sandfell Mt. Credit: D Remias.


20-EPN-FT1-024: Untangling rock-inhabiting microorganisms and their biosignatures from the Mars-like area of Puna Plateau, Argentinian Andes

20-EPN-FT1-024: Untangling rock-inhabiting microorganisms and their biosignatures from the Mars-like area of Puna Plateau, Argentinian Andes

Visit by Lorenzo Aureli and Gerardo Antonio Stoppiello, University of Tuscia (Italy), to TA1.6 Argentinian Andes (Argentina).
Dates of visit: 17-23 April 2022

Report Summary: The hostile current conditions on the surface of Mars entail that, if any form of life exists or ever existed on the planet, it may have adopted survival strategies like those evolved by terrestrial microorganisms inhabiting extremely harsh regions. Here, one of the most common strategies observed is endolithic growth, defined as the colonisation of the small interstices and cracks inside rocks where microorganisms can be protected from external hostile conditions. On the other hand, environments exhibiting a strong negative hydrological balance can be characterised by the sporadic presence of pools saturated in minerals. Here, microorganisms can induce carbonate precipitation along with the physicochemical factors occurring in these environments, causing the formation of sedimentary structures in which they can be trapped.

From an astrobiological perspective, several studies showed how the early Mars environment may have exhibited an overall desertic environment hosting localised water basins. Therefore, the possibility that microbial forms of life may have existed on Mars makes hypothetical endolithic habitats and evaporite deposits on the planet interesting targets for the search for tracks of past life. In this optic, the southern end of the Puna Plateau in the Argentinian Andes (Catamarca province, Argentina) may represent an excellent model to understand how putative microorganisms may be adapted to the early Martian environments and how to detect their signatures. For this reason, a sampling campaign was performed at the Laguna Negra Lake (Puna Plateau region) in April 2022, with the purpose to characterise different microbial habitats hosted in the site.

Read the full scientific report, with kind permission by Lorenzo Aureli.


21-EPN-FT1-003: Biogeochemical tools to search for biosignatures in microbial carbonates from extreme environments

21-EPN-FT1-003: Biogeochemical tools to search for biosignatures in microbial carbonates from extreme environments

Visit by Sylvie Bruggmann, University of Lausanne (Switzerland) and Camila Areias, Vrije Universiteit Amsterdam (Netherlands), to TA1.6 Argentinian Andes (Argentina).
Dates of visit: 10-16 December 2022

Report Summary: Microorganisms evolved under extreme conditions as the first forms of life on Earth. In the geological record, signatures of these microbial communities can be preserved in the chemistry of sedimentary rocks as microbialites. The identification of their biogenicity, however, is often ambiguous, as biosignatures can be overprinted, and abiotic processes may form similar signatures. Microbialites forming under extreme conditions on the modern Earth can be used as analogues to better understand the formation of biosignatures, and to improve their identification in sedimentary rocks from Earth and Mars.

The TA1 Facility 6 in the Argentinian Andes provides an ideal environment where carbonaceous microbialites form under extreme conditions, such as cold temperatures, low precipitation and high UV radiation. To better resolve the ambiguity of biosignatures, we use a combined approach of organic and inorganic biogeochemical tools to examine sediment and water samples. The organic tool focuses on lipid biomarkers that can be attributed to specific biogenic sources, such as cyanobacteria. In addition, the inorganic tool utilises elemental concentration and isotope compositions of biologically relevant metals, such as Fe or Sr, which can record information of a biogenic or abiotic origin. The combination of these organic and inorganic tools can improve the identification of biosignatures and their credibility can be enhanced.


20-EPN2-066: From Geitafell Volcano (Iceland) to Mars

20-EPN2-066: From Geitafell volcano (Iceland) to Mars: How hydrothermal alteration of basalt can guide our understanding of habitable environments on Mars

Visit by Julia Semprich and Geoff Austin, Open University (UK), to TA1 – Iceland Field Sites, MATIS
Dates of visit: 21 September – 01 October 2022

Hydrothermal systems provide conditions and nutrients for microbial life and thus have the potential to create subsurface habitats on Mars. Characteristic minerals associated with these hydrothermal systems have been detected on Mars’ surface by spectral observations from orbit, but their formation conditions and spatial distribution remain unknown. The aim of this study was a detailed characterisation of the spatial distribution and mineral chemistry of the low-grade metamorphic/hydrothermal alteration mineralogy in an extinct hydrothermal system.

Field work was conducted at the Geitafell central volcano near Hoffell in the south-eastern part of Iceland, an ideal analogue for Mars. The focus of this research was to record spatial relationships between the basaltic host rocks and the hydrothermal alteration in the field and to sample characteristic low-grade metamorphic minerals, which have also been detected on Mars.

We collected 19 samples from different alteration zones within the hydrothermal system including veins and vesicular basalt showing a range of alteration minerals such as carbonates, quartz, zeolites, chlorite, prehnite, epidote, andradite, and actinolite. We will now be able to conduct a detailed study of the samples including petrography, mineral chemistry, and spectroscopy, which can then be used to further constrain our models of hydrothermal alteration on Mars.

We expect this research to be highly relevant to the study of hydrothermal systems on Mars and particularly for sample return once the Perseverance Rover reaches the rim of Jezero Crater, which likely exposed hydrothermally altered rocks.

Banner image: View towards Hoffellsjökull glacier. CC BY-SA 3.0 (Gummao)


20-EPN2-105: Uncrewed Aerial System (UAS) and LiDAR Survey of Relict and Active Periglacial Patterned Ground as Analogues for Mars

20-EPN2-105: Uncrewed Aerial System (UAS) and LiDAR Survey of Relict and Active Periglacial Patterned Ground as Analogues for Mars

Visit by Paul Knightly, Northern Arizona University (USA), and Shannon Hibbard, JPL (USA), to TA1 – Iceland Field Sites, MATIS
Dates of visit: 22-31 August 2022

Uncrewed aerial system (UAS) and LiDAR surveys were performed at periglacial patterned ground sites, including polygons terrain and stone circles, in the Westfjords and Central Highlands, Iceland during the 2022 site field season. Shallow trenches (up to 1 m depth) were excavated to gather in­situ measurements and observations to determine the presence or absence of permafrost and substrate characteristics. No permafrost was observed at either site suggesting the features may be periglacially relict. The processed UAS and LiDAR data will be used to perform morphometric evaluations of patterned ground at each site and compared to previously collected and analyzed morphometric evaluations of periglacially active patterned ground in the Canadian Arctic. The objective of this work is to develop a set of morphometric criteria for distinguishing between active and relict patterned ground. The developed criteria may help inform on the current level (or absence of) periglacial activity and ice content of patterned ground on Mars.

Read the full scientific report, with kind permission from Paul Knightly.


20-EPN2-099: Bioaerosol generation at geothermal systems: Implications for the detection of biosignatures in cryovolcanic plumes at the ocean worlds

20-EPN2-099: Bioaerosol generation at geothermal systems: Implications for the detection of biosignatures in cryovolcanic plumes at the ocean worlds

Visit by Mark Fox-Powell and Claire Batty, Open University (UK) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 27 July – 09 August 2022

The aim of our project was to capture and study microscopic aerosols ejected from bubbling or geysering geothermal springs in Iceland. Our primary motivation was to understand the potential for biosignatures to become entrained within cryovolcanic plumes at icy moons, such as Saturn’s moon Enceladus, where similar bubbling of hydrothermal gases is thought to drive the formation of aerosols that are then accelerated into space. Fieldwork was conducted at geothermal systems in Iceland in July and August 2022 by a team from the Open University (UK).

We focused our aerosol sampling efforts on two locations that exhibit contrasting aerosolisation regimes: Olkelduhals hot springs, Hverageroi, which exhibit constant, moderate bubbling of geothermal gases, and Strokkur, Geysir, which experiences regular energetic geyser eruptions. Our aerosol flux monitoring showed that geothermal springs are prolific local sources of aerosols, producing fluxes orders of magnitude above background levels. We also found that aerosol production is tightly controlled by bubbling and/or eruption activity.

Successful replicate sample sets were taken at upwind locations to characterise the background aerosol environment, and at multiple downwind locations to capture geothermal aerosols. We also took samples of spring fluids, as the assumed local aerosol sources, and geothermal gases, which are responsible for driving bubbling activity. Ongoing work is investigating the chemical composition, biomass content and microbial diversity of aerosols, and the volatile profiles of geothermal gases. Our data will provide the first insights from natural analogues into the formation of aerosols within cryovolcanic plumes.

Read the full scientific report, with kind permission from Mark Fox-Powell.


20-EPN2-120: A Molecular Toolkit to Hunt and Resolve Dark Fungal Matter (DFM) in Extreme Planetary Environments

20-EPN2-120: A Molecular Toolkit to Hunt and Resolve Fungal Dark Matter (FDM) in Extreme Planetary Environments

Visit by Ali Nawaz and Christian Wurzbacher, Technical University of Munich (Germany) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 19 – 23 July 2022

Fungi are amazing but largely enigmatic creatures with huge diversity and biological potential in any conceivable ecosystem known so far. This holds for our planet, but this also seems true for outer space and other planetary bodies. However, we do not know what kind of extremophile fungi are or have been growing on other planets.

To have a clue, we need to explore extreme analogue sites on our planet using novel and advanced methods. Therefore, we here propose to collect and study samples from various extreme habitats of Iceland using a unique combination of Laser-microdissection of single cells and long-read sequencing to fully resolve the Fungal Dark Matter of Mars-analogue extreme sites in Iceland.

We believe that the outputs of this project will bring novel fungal species into scientific arena and the findings of this proposal will help the broader general scientific community dealing with AstroMycology in specific, and Astrobiology in general, to rightly speculate on the capabilities and limitations of microbial life in extreme environments and correlate it with the conditions of other planets.

Read the full scientific report, with kind permission from Ali Nawaz.


20-EPN-003: Production and Early Preservation of Biosignatures in Glaciovolcanic Lakes

20-EPN-003: Production and Early Preservation of Biosignatures in Glaciovolcanic Lakes: A Biogeochemical Analogue for Mars

Visit by Erin Gibbons and Richard Leveille, McGill University (Canada) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 28 May – 08 June 2022

The search for extraterrestrial life, either extinct or extant, on Mars is a key objective for several international space exploration programmes. To maximise the likelihood of success for these programmes, we must first study ecosystems on Earth that resemble those on Mars and investigate both the kinds of organisms that can survive there and the processes that control their ultimate preservation/fossilisation in the rock record.

We proposed that the geothermally-heated lake Gengissig, located in the Highlands of Iceland, represented an ideal natural laboratory within which to conduct a Mars-centric taphonomic study. Geologically, this setting provides an excellent analogue for Mars because the basaltic bedrock has a bulk chemical composition that is similar to the rocks measured on Mars by past and current rovers, thereby allowing us to study how signs of life may be preserved by the rock types common on Mars. Furthermore, this remote location is nearly devoid of multicellular life-forms and is isolated from anthropogenic input, providing a pristine ecosystem to study the fossilisation processes expected to be encountered on Mars – those operating on microbial life. 

We collected water, rock, and lake sediment samples to investigate the site. We intentwill use a combined genomic, stable isotope, and geochemical approach to investigate the indigenous microbial communities and their ultimate fossilisation in this Mars-like terrain.  the results of which will be immediately relevant towards directing current and upcoming Mars rovers towards sites on Mars most likely to retain signs of ancient extraterrestrial life.

Read the full scientific report, with kind permission from Erin Gibbons.


Новости Омутнинск Любовь и семья Общество Люди и события Красота и здоровье Дети Диета Кулинария Полезные советы Шоу-бизнес Огород Гороскопы Авто Интерьер Домашние животные Технологии Рекорды и антирекорды