20-EPN2-121: Constraining the movement of groundwater and fluid expulsion within playa environments on Mars

20-EPN2-121: Constraining the movement of groundwater and fluid expulsion within playa environments on Mars

Visit by Gene Schmidt, Università degli Studi Roma Tre (Italy) and Erica Luzzi, Jacobs University (Germany) to TA1.5 Makgadikgadi Salt Pans (Botswana).
Dates of visit: 20-27 October 2021

Across the surface of Mars there is evidence of past lacustrine and evaporitic environments found within basins and craters, where often layered sedimentary deposits and hydrated minerals are observed. However, the intensity, duration and precise phases of water cycle activity during this period remain unresolved. Although several geological processes and locations on Earth have been previously proposed as examples to describe these deposits on Mars, we lack a strong visualisation of what water activity might have looked like during evaportic stages within basins and craters. The Makgadikgadi Salt Pans of Botswana, where once the Makgadikgadi Lake existed, is a present evaporitic environment rich in hydrated minerals and water activity. It is a depression located at the southwestern end of a northeast-southwest set of graben. Faults have been previously proposed to have been pathways for groundwater to enter basins and craters on Mars, which then contributed to both the deposition and alteration of the sedimentary deposits. Thus, imaging the subsurface of a similar environment on Earth can help us to better understand how water processes on Mars might have continued as the Martian global climate became drier.

By using the already established locations of the faults to the north of the pans, we used remote sensing techniques to trace the best location of the faults underneath the pans (Figures 1 and 2). We then used electrical resistivity surveys to image 70 – 150 m of the pans’ subsurface where the faults were deemed most likely to occur. This work allows us to better understand the possibilities of what the underlying lithology of rocks within filled basins and craters might look like. Furthermore, it demonstrates the scientific importance of future missions to employ subsurface imaging techniques on Mars.

Report Summary:

Read full report.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-065: Characterising dust lifting events using ground-based Mars-2020 and ExoMars radiometers

20-EPN2-046: Characterising dust lifting events using the ground-based Mars-2020-RDS and ExoMars-2022-SIS radiometers

Visit by Daniel Toledo, INTA (Spain) to TA1.5 AU Makgadikgadi Salt Pans (Botswana).
Dates of visit: 29 September – 06 October 2021

Report Summary:

On Mars, the airborne dust is a critical factor that drives the weather and climate of the planet. Dust devils are thought to account for the ~50 % of the total dust budget, and they represent a continuous source of dust, present even outside the dust storms period. For these reasons they have been proposed as the main mechanism able to sustain the observed dust haze of the martian atmosphere. However, additional dust devil surveys covering long diurnal periods are needed to place quantitative constraints on the cycles of these events. In this regard, the present and future observations of the Radiation and Dust Sensor (RDS) and the Sun Irradiance Sensor (SIS), which are part of NASA Mars 2020 and ESA/Roscosmos ExoMars 2022 missions, offer a unique opportunity to monitoring dust devils at high temporal resolution from sunrise to sunset, and with an excellent spatial coverage.

The main goal of the field campaign in the Makgadikgadi Salts Pans (20-EPN2-065) was to study dust lifting events using the spare units of RDS and SIS. During the campaign (29 Sept to 6 Oct 2021), a large number of dust devils (>10) and dust lifting events produced by wind gusts (>10) were observed by RDS and SIS sensors. For each case, information on distance, size, temporal duration and direction was registered. This information along with observations made by other instruments (e.g. wind speed and direction), have allowed us to study the potential RDS and SIS capabilities for dust lifting characterisation on Mars.

Read full report.

Outreach report


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-044: Investigating molecular and isotopic fingerprints of life on Greenland Ice Sheet (GrIS) cryo-ecosystems with astrobiological interest for icy worlds.

20-EPN2-046: Investigating molecular and isotopic fingerprints of life on Greenland Ice Sheet (GrIS) cryo-ecosystems with astrobiological interest for icy worlds.

Visit by Laura Sánchez-García, Centro de Astrobiología (INTA-CSIC), Madrid, Spain, to TA1.4 AU Greenland Kangerlussuaq Field Site (Greenland).
Dates of visit: 19-25 July 2021

Report Summary:

Glacial systems are interesting for studying habitability and limits of life. They are extreme environments where indigenous microorganisms may survive prolonged exposure to sub-zero temperatures and background radiation for geological timescales. Glaciers and the surrounding cryo-environments (permafrost, glacial lakes, or melting streams) arise as relevant scenarios for studying the development of functional microbial cryo-ecosystems and may have implications in the search for past or extant life in icy worlds beyond the Earth. In the Solar System, Europa and Enceladus have been recognized as the icy worlds with highest likelihood to harbor life, largely because liquid water could be in contact with rocks. Both satellites are believed to contain a global ocean of salty water under a rigid icy crust that would provide the scenario for an interaction between briny water and rocks, and the conditions for life to arise.

The permanent Greenland Ice Sheet (GrIS) represents a possible analog of such icy worlds, constituting an important long-term repository of psychrophilic microorganisms. Around the GrIS, different formations such as glacial lakes, permafrost, or further peat soils represent diverse degree of succession upon the influence of the GrIS and its thermal destabilisation.

We propose investigating molecular and isotopic lipid biomarkers of microorganisms inhabiting different cryo-ecosystems at and around the GrIS to obtain clues of a potential life development on analogous extraterrestrial cold environments (ice sheet), and learning how ecosystems evolves (biological succession) when the ice cover retreats and gets exposed to the atmosphere (glacier-melting streams, bedrock-erosion sediments, lake sediments, glacial soils).

Read full report.

Outreach report


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-046: Dust-carbon-climate feedbacks tested through detailed independent dating of Arctic wind-blown dust sequences on Greenland

20-EPN2-046: Dust-carbon-climate feedbacks tested through detailed independent dating of Arctic wind-blown dust sequences on Greenland.

Visit by Thomas Stevens, Uppsala University (Sweden) to TA1.4 AU Greenland Kangerlussuaq Field Site (Greenland).
Dates of visit: 19-25 July 2021

Report Summary: The aim of this field campaign was to investigate the dynamics of aeolian mineral dust activity and organic carbon burial in western Greenland. Dust is an important component of the global climate system, and investigating its mobilisation, transport and deposition can reveal important information about regional climate and environmental development during the Holocene. Carbon burial in permafrost is one of the main mechanisms by which carbon is sequestered from the atmosphere, and may be linked to dust activity in high latitudes. The work focused on the area between the Greenland Ice Sheet margin and Kangerlussuaq, which represents a range of environmental conditions depending on distance from the ice sheet. We collected modern analogue samples of terrestrial windblown dust (loess) deposits to test and compare the performance of optically stimulated luminescence and radiocarbon dating. These samples were taken at a high-resolution from the surface of the deposits and thus represent recent aeolian activity. Furthermore, we targeted aeolian deposits containing palaeosol layers to be able to independently compare radiocarbon and luminescence ages, and to identify climate phases which were favourable for soil formation and carbon burial. In addition to purely aeolian sediments, peat bogs were also sampled.

These highly organic deposits complement the nearly purely minerogenic loess deposits because they effectively capture and preserve fine-grained wind-blown sediments. Further analysis of these samples and the use of different climate and carbon burial proxies will reveal important details of the regional climate history, dust-carbon burial dynamics, and provide insights into ice-proximal wind dynamics.

Read full report.

Outreach report


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-089: UPSIDES – Unravelling icy Planetary Surfaces: Insights on their tectonic DEformation from field Survey

20-EPN-089: UPSIDES – Unravelling icy Planetary Surfaces: 
Insights on their tectonic DEformation from field Survey.

Visit by Costanza Rossi, INAF – Astronomical Observatory of Padova (Italy) to TA1.4 AU Greenland Kangerlussuaq Field Site (Greenland).
Dates of visit: 19-25 July 2021

Report Summary: The Isunguata Sermia and Russell glaciers represent optimal analogues for the study of deformation in glacial environments and their comparison with deformation that affects the icy satellites of Jupiter and Saturn. The aim of UPSIDES project concerns the relation of tectonic structures from the outcrop to the regional scale with multi-scalar investigation which can provide significant support for planetary analysis. The collection of field data has been significant to find scaling laws between tectonic structures in glaciers and in icy satellite surfaces, and the behaviour at depth of their tectonic structures.

The successful fieldwork in the Kangerlussuaq area enabled the identification of tectonic structures in representative areas of the Isunguata Sermia (southern margin) and Russell glaciers (northern margin and terminus). More than 250 data have been collected from 31 field measurement stations including high dip- and low dip-structures, originated by different stress fields caused by the westward flow of both glaciers. We recognized high dip-extensional fractures approximately E-W and NE-SW trending at the Russell glacier. On the other hand, NNW-SSE trending fractures and low-angle faults, such as compressional thrusts/shear planes, have been detected at the Isunguata Sermia. From satellite imagery and aerial photos, we detected consistent structural orientations with the structures identified in outcrop. A similar correlation will be applied to the structures recognised by remote sensing on the icy satellites. Additionally, at the outcrop scale we identified structures acting as preferential way of fluid circulation. We performed measurements also in rock outcrops near the glacier to understand the relationship between bedrock morpho-tectonics and ice drainage that in turn control the measured glacial deformation.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-017: LITRASV – Life in TRAvertine-Sinter Veins

20-EPN-017: LITRASV – Life in TRAvertine-Sinter Veins: a possible key to recognize extra-terrestrial life in tectonically-driven depositional systems.

Visit by Enrico Capezzuoli, University of Florence and Andrea Brogi, University of Bari (Italy) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 04-10 July 2021

Report Summary: Detailed study of travertine and sinter depositional systems and related feeder conduits (veins) in cold desertic setting (Lýsuhóll and Hveravellir sites- Iceland), as possible repository of subsurface life to be observed in extra-terrestrial setting. The performed field activity allows reconstruction of the structural control in these sinter/travertine depositional systems, with stratigraphic-sedimentological characterisation of the travertine-sinter lithofacies. 16 travertine/sinter samples were collected from the two sites, together with the basic physical characterization of the thermal springs (T, pH, Cond). Due to the local conditions, all the collected samples derive from fossil/inactive systems (veins and crusts samples). Among these, one sample derives from a sinter vein recognized in the Lýsuhóll site, while all other derive from fossil vents or close surroundings.

Samples returned to Italy for future petrographic and geochemical characterization in order to detect and define possible organic presence in such an extreme environment.

Read full report.


Back to TA main page.

Back to Europlanet 2024 RI homepage.