20-EPN2-073: Assessment of the Aeolian Dispersion and Wind Effects on Cryptoendolithic Microorganisms in the Martian Environment

20-EPN2-073: Assessment of the Aeolian Dispersion and Wind Effects on Cryptoendolithic Microorganisms in the Martian Environment

Virtual visit by Lorenzo Aureli, University of Tuscia (Italy) to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark).
Dates of visit: 15-19 November 2021

Report Summary: The hostile current conditions on the surface of Mars entail that, if any form of life exists or ever existed on the planet, it may have adopted survival strategies like those evolved by terrestrial microorganisms inhabiting extremely harsh regions, such as Antarctic deserts. Here, one of the most common strategies observed is the cryptoendolithic growth, defined as the colonisation of the small interstices inside rocks, where microorganisms are protected from external hostile conditions. However, endolithic microorganisms can break down the surrounding rock substratum, thus causing the exfoliation of the external layers of the colonised rocks. Consequently, exposure to wind and saltating sand can cause the dispersal of the shallow rock fragments and endolithic colonies to the environment.

This study aimed to examine the possibility of dispersal of hypothetical rock-dwelling microorganisms on the surface of Mars. To achieve this goal, colonised Antarctic sandstone rocks were exposed to simulated martian and terrestrial windy environments at the Planetary Environment Facility in Aarhus University in four different simulations. Rock, sand and dust samples were collected after each simulation to assess the survival and the variety of dispersed microorganisms in the two scenarios. Although biological data are not available at the moment of the draft of the report, remarkable differences were observed in the dispersal of dust and sand between the different conditions.

Read full report.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-084: Converting one amino acid to the other containing sulfur via ion irradiation: Implication to chemical evolution on Europa surface ices

20-EPN-084: Converting one amino acid to the other containing sulfur via ion irradiation : Implication to chemical evolution on Europa surface ices

Visit by Rahul Kumar Kushwaha, Physical Research Laboratory, Ahmedabad (India) to TA2.11 Atomki Ice Chamber for Astrophysics / Astrochemistry (ICA) (Hungary).
Dates of visit: 8-19 December 2021

Report Summary: The non-equilibrium chemistry driven by the charged particle and photon irradiation processes are responsible for the rich chemistry on the surfaces of icy satellites. Among the icy satellites of the Jovian and Saturnian planetary systems, a few satellites such as Ganymede, Europa, Dione, Rhea, Callisto and Titan that are embedded in their respective planetary magnetospheres were observed to undergo rich chemical processes due to the bombardment of a wide range of energetic atomic and molecular ions that are present in their planet’s magnetospheres, which processes the icy surfaces of satellites by irradiation and implantation. Magnetospheres also help in bringing new species from one satellite to the other. Especially in the Jupiter system of icy satellites, sulfur transfer from Io to the other satellites is quite likely. The sulfur ions from Io are picked up by the magnetosphere and are accelerated towards the other icy satellites; Europa being the closest neighbour to Io will be implanted with sulfur ions. The Jovian satellites, due to the presence of the Jupiter’s magnetosphere, are subjected to highly energetic S ion irradiation which leads to a range of chemical activity on their surfaces. In this project, we have studied the effect of S ion irradiation on Aspartic acid for a range of energies at two different temperatures (100 K, 20 K), where the 100 K experiments are aimed to mimic the conditions of Europa. The irradiated residue was then analysed using an optical microscope, scanning electron microscope and liquid chromatography mass spectrometry.

Full scientific report published by kind permission of Rahul Kumar Kushwaha


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-081: Vis-NIR reflection spectroscopy of ammonium salts relevant for icy planetary surface characterisation

20-EPN-029: Vis-NIR reflection spectroscopy of ammonium salts relevant for icy planetary surface characterisation

Virtual visit by Maximiliano Fastelli, University of Perugia (Italy), to TA2.8 CSS (Cold Surfaces Spectroscopy) at IPAG (France).
Dates of visit: 13 October – 5 November 2021

Report Summary: During this TA visit under Europlanet 2024 RI 2nd call, reflectance VIS-NIR spectra of several ammonium salts were collected at the CSS facility (IPAG laboratory) in Grenoble, France. Different temperature steps were chosen to collect cryogenic data down to 90 K. Samples were characterised by low temperature crystalline phase transitions, and for these reasons, the measurement steps have been increased in the proximity of the expected temperature of mineral transformation. Cooling and heating experiments, using the same cooling/heating rate, were performed to bracket the phase transition and verify its reversibility. All the spectra were collected with three different grain size (150/125 – 125/80 – 80/32 μm) in the spectral range from 1 to 4.6 μm at low T. Typical absorption features due to overtones and combinations of NH4+ groups were identified in the spectral range investigated. Phase transitions, when detected, show an interesting behaviour with change in shape and position of some (sensitive) absorption bands which could be useful for the identification of these phases at non-ambient T. Moreover, the effect of low and different granulometry were observed.

It has been proposed that ammonium minerals are present in varying percentages in icy planetary bodies. The availability of these compounds is linked to the upwelling of ammonium salts (NH4+) with ice from the subsurface of possible oceans resulting from cryovolcanism phenomena. The identification of these minerals on the surface can give information about internal composition/dynamics and potential habitability of icy bodies.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

Issue 2 of the Europlanet Magazine is out!

Issue 2 of the Europlanet Magazine is out!


The official magazine of Europlanet, the European community for planetary science.

We are delighted to share with you the second issue of the Europlanet Magazine. The e-magazine is published twice a year and aims to highlight the range of activities by Europlanet, our partners, and the wider planetary community.

The second issue highlights some of the exciting science supported through Europlanet’s Transnational Access programme, including an experimental project to recreate martian flows in the lab, field campaigns in Botswana and Greenland, and virtual access to facilities in Korea. Niklas Nienass MEP shares his vision for Europe’s role in the new Space Race, and we report on the science presented and community events at the Europlanet Science Congress (EPSC) 2021 in September. As the Europlanet 2024 Research Infrastructure (RI) passes a major milestone, we look at some of the outcomes of the projets to date, and we have an insight into the long pathway that’s led to the recent selection of three missions to Venus. We also have features on designing meetings in pandemic and post-pandemic times, outreach initiatives, an industry database with links to planetary science, and searching for evidence of the earliest forms of life on Earth.

Please check out Issue 2 and share with your networks to help us spread the word.


In this issue:

round up of news from Europlanet 2024 RI, the Europlanet Society, the Europlanet Science Congress (EPSC) 2021 and the planetary community.

Celebrating Science at EPSC2021 

Stavro Ivanovski (INAF) and Akos Kereszturi (Konkoly Thege Miklos Astronomical Institute), Co-chairs of the Scientific Organising Committee (SOC), review the second virtual Europlanet Science Congress.

Spotlight on Diversity at EPSC2021 

The Europlanet Diversity Committee describes events at EPSC2021 to highlight equity, diversity and inclusion

Early Career Events at EPSC2021 

Noah Jäggi, Chair of the EPEC@EPSC Working Group, reports on a packed programme at EPSC2021 organised by the Europlanet Early Career (EPEC) network

Designs on Pandemic and Post-Pandemic Meetings: Learning with the EPSC 2021 Team 

Amy Riches (University of Edinburgh, UK, and SETI Institute, USA) describes her experiences as a planetary geochemist diving into the EPSC2021 Media Internship Programme.

Planetary Perspectives

Lena Noack, Incoming Chair of EPSC2021, talks about her career, inspirations, and her experiences with Europlanet in this month’s Planetary Perspectives Q&A.

Finding New Ways of Envisioning Venus 

Jörn Helbert (DLR) looks forward to three new missions to investigate Earth’s mysterious twin

Connecting Communities Across the Industry – Academic Divide 

Marcell Tessenyi (Blue Skies Space Ltd) and Jeronimo Bernard-Salas (ACRI-ST) report on a survey and new database to support industry-academia collaborations

Europe and the New Space Race 

Following the Industry-Policy Session at EPSC2021, Livia Giacomini (INAF) spoke to Niklas Nienass, a Member of the European Parliament (MEP) for Germany in the Group of the Greens/European Free Alliance, about his vision for space science in Europe.

FANTASTIC ACCESS 

As we emerge from nearly two years of restricted travel, Gareth Davies (VUA, Netherlands) gives an update on Europlanet’s Transnational Access (TA) programme, which provides free access to facilities and field sites around the worldLonneke Roelofs (Utrecht University, Netherlands), Daniel Toledo (INTA, Spain), Costanza Rossi (INAF, Italy), Denice Borsten and Jochem Sikkes (VUA, Netherlands) share their expriences of participating in TA visits.

The Animated Universe of James O’Donoghue 

Federica Duras and Livia Giacomini (INAF) talk to the Europlanet Prize 2021 winner, James O’Donoghue, about his motivations for creating animations to communicate challenging scientific concepts and his advice on a career in planetary science 

Evaluating the Impact of Europlanet 2024 RI 

 Project Evaluator, Jennifer DeWitt, and Communications Manager, Anita Heward, report on outcomes of the first review of Europlanet’s flagship research infrastructure

Looking for the earliest forms of life on Earth 

Barbara Cavalazzi (University of Bologna) describes how an international effort has identified some of the earliest examples of life on Earth

The Bolivian San Agustin Remote Observatory 

Gabriel Andres Jaimes Illanes, the IAU National Education Coordinator for Bolivia and member of the San Agustin Educational Foundation (FESA), reports on plans to develop a remote observatory to support astronomy outreach in Bolivia

CommKit

The Europlanet Magazine’s column on science communication by Shorouk Elkobros (Europlanet Society/ESF).

The Last Word

Nigel Mason reflects on a challenging year in Beyond Borders.

20-EPN-078: Abrasion test to understand aeolian grain surface evolution on Mars versus Earth – suggestions for ExoMars rover mission

20-EPN-078: Abrasion test to understand aeolian grain surface evolution on Mars versus Earth – suggestions for ExoMars rover mission

Virtual visit by Zsuzsanna Kapui, Eötvös Lorand University ̷ Research Centre for Astronomy and Earth Sciences (Hungary) to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark).
Dates of visit: 2-6 August 2021

Surface microtextures on quartz grains provide good information of the transport medium (ice, river, wind) on Earth, as shape and surface micromorphological features strongly depend on them. A well-developed system has been already used for the quartz grains, but similar detailed studies of basaltic grains have not been conducted before, although this could be relevant for Mars. We aim to develop such a system for olivine grains (main basalt forming mineral). Between 2-6 August 2021, a quartz and an olivine sand grain group (both sized 1 – 2 millimetre) were analysed by wind transport at the AWTSII Wind tunnel facility in Aarhus, Denmark.

A special, self-built box (wind tunnel section with a relatively small cross section) was designed and produced in Hungary to allow periodic transport of the sand grains from one end to the other by a motor driven rotation system. The test started with difficulty because the sands movement did not start, a combination of factors meant that even at the highest fan rotation rate of the AWTSII facility active sand transport was not achieved. Finally, the solution became that the sand holder box in the wind tunnel was also tilted by 24 degrees. The quartz and olivine sands were transported by a mixture of gravitational avalanching and wind driven transport at around 1 bar pressure. Altogether two tests were performed during around four hours to see the attrition process related to grain shapes and surface microstructures. Microscope and webcam videos as well as wind flow data (pitot tube) were collected.

Currently, microscopic analysis with Morphology instrument is underway on the returned particles. The obtained results will be included in an article in progress and in my doctoral dissertation.

Report Summary:

Read full report.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-121: Constraining the movement of groundwater and fluid expulsion within playa environments on Mars

20-EPN2-121: Constraining the movement of groundwater and fluid expulsion within playa environments on Mars

Visit by Gene Schmidt, Università degli Studi Roma Tre (Italy) and Erica Luzzi, Jacobs University (Germany) to TA1.5 Makgadikgadi Salt Pans (Botswana).
Dates of visit: 20-27 October 2021

Across the surface of Mars there is evidence of past lacustrine and evaporitic environments found within basins and craters, where often layered sedimentary deposits and hydrated minerals are observed. However, the intensity, duration and precise phases of water cycle activity during this period remain unresolved. Although several geological processes and locations on Earth have been previously proposed as examples to describe these deposits on Mars, we lack a strong visualisation of what water activity might have looked like during evaportic stages within basins and craters. The Makgadikgadi Salt Pans of Botswana, where once the Makgadikgadi Lake existed, is a present evaporitic environment rich in hydrated minerals and water activity. It is a depression located at the southwestern end of a northeast-southwest set of graben. Faults have been previously proposed to have been pathways for groundwater to enter basins and craters on Mars, which then contributed to both the deposition and alteration of the sedimentary deposits. Thus, imaging the subsurface of a similar environment on Earth can help us to better understand how water processes on Mars might have continued as the Martian global climate became drier.

By using the already established locations of the faults to the north of the pans, we used remote sensing techniques to trace the best location of the faults underneath the pans (Figures 1 and 2). We then used electrical resistivity surveys to image 70 – 150 m of the pans’ subsurface where the faults were deemed most likely to occur. This work allows us to better understand the possibilities of what the underlying lithology of rocks within filled basins and craters might look like. Furthermore, it demonstrates the scientific importance of future missions to employ subsurface imaging techniques on Mars.

Report Summary:

Read full report.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-034: Calibration of the Al-in-olivine thermometer: Insight into the thermal history of type II chondrules

20-EPN-034: Calibration of the Al-in-olivine thermometer: Insight into the thermal history of type II chondrules

Visit by Thomas van Gerve and Kat Shepherd, KU Leuven (Belgium) to TA2.9 Ion Probe Facility (IPF), CRPG (France).
Dates of visit: 18-22 October 2021

Report Summary:

Chondrites are the most primitive agglomerates formed in the solar system. In this project, we want to develop a thermometer based on Al-in-olivine/spinel equilibrium to calculate the temperature of formation of chondrites. or this project, we have performed a large number of new low- to high-pressure (1 atm – 10 GPa) experiments relevant to chondrule formation at the KU Leuven.

Experiments were run at high temperature (1200-1800°C), under variable oxygen fugacity conditions (IW+1 to IW+5, IW = iron-wustite). From 18-22 October 2021, Thomas van Gerve and Kat Shepherd (KU Leuven) worked with the Cameca IMS 1270 E7 ion probe at CRPG, Nancy, under the supervision of Dr. Johan Villeneuve and M. Nordine Bouden. We have measured the following masses: 12C, 16O1H, 18O, 19F, 27Al, 30Si, 32S and 35Cl in olivine, glass and glass inclusions. During our analytical session, we measured ~ 150 points in olivine and glass in addition to the standards. Results are extremely reproducible and show a trend of slightly increasing Al content in olivine as a function of the Fo content (molar Mg/(Mg+Fe)) of olivine. Using our new SIMS results, we are in the process of developing a thermodynamically rooted model taking into account major components in spinel and olivine.

Read full report.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

Dust Devil Diary

Dust Devil Diary

From 29 September – 6 October 2021, researchers Daniel Toledo and Victor Apestigue (Instituto Nacional de Técnica Aeroespacial (INTA), Spain) were funded by the Europlanet 2024 Research Infrastructure (RI) Transnational Access (TA) programme to visit the Makgadikgadi Salt Pans in Botsawana. The trip was led by Fulvio Franchi (Botswana International University of Science and Technology (BIUST)) who is responsible for the Botswana Planetary Field Analogue for Europlanet 2024 RI. Ignacio Arruego, Javier Martinez-Oter and Felipe Serrano (INTA) also participated in the field trip. In this guest post, Daniel Toledo reports on the field trip.

The main goal of the field campaign in the Makgadikgadi Salts Pans was to study how dust is lifted into the air. For our investigation, we used the spare units of the Radiation and Dust Sensor (RDS) from the NASA Mars 2020 mission and the Sun Irradiance Sensor (SIS) from the ExoMars 2022 mission (see Figure 1), which are designed to study dust carried in the atmosphere of Mars by measuring how sunlight is scattered by the dust particles.

In addition to giving information about the properties of airbourne dust, these instruments are also sensitive to the presence of dust devils – swirling columns of sand and dust that are a common feature of desert areas on Mars and on Earth. RDS and SIS can detect the changes over time in the sky brightness produced by a dust devil, and this offers a unique opportunity for monitoring and studying such events during the Mars 2020 and ExoMars 2022 missions. However, to be able to characterise and interpret dust devil observations on Mars, we first need to understand how dust devils affect SIS and RDS signals by thorough testing and evaluation of the instruments in Mars-like conditions on Earth. 

Figure 1. (Left) RDS instrument: two sets of eight photodiodes. One set is pointed upward, with each photodiode covering a different wavelength range between 250-1000 nanometres. The other set is pointed sideways, 20° above the horizon, and they are spaced 45° degrees apart in azimuth to sample all directions at a single wavelength; a zenith-pointed camera (Skycam) with special optics is designed to measure column optical depth.(Right) SIS instrument: Five detectors pointed at zenith and with different spectral bands and Fields of View (FOVs); twelve lateral detectors (six in the ultraviolet range and six in the near infrared range) pointed sideways; a micro-spectrometer pointed directly upwards (at zenith) with a spectral resolution of 10 nanometres in the 340-780 nanometres range. 
Figure 2. Dust devils observed in Makgadikgadi Salt Pans (left panel) and on Mars (right panel). A typical dust devil on Mars spans from hundreds of metres to thousands of metres in diameter, with a height one-eight times as large. Dust devils of Mars are thought to account for the ~50% of the total dust budget, and they represent continuous source of lifted dust, active even outside the dust storms season. For these reasons, they have been proposed as the main mechanism able to sustain the constantly-observed dust haze in the martian atmosphere.

To achieve this goal, we planned a field campaign from 29 September to 6 October in the southern part of Makgadikgadi Salt Pans (see Figure 3), in the Pan near Mopipi town. This location is characterised by frequent dust devil events and conditions that promote the lifting of high levels of aerosols (dust and particles) into the atmosphere.

Each day of the campaign, we set up RDS and SIS at two different locations from sunrise to sunset, separated by about 25 m, along with:

  1. Two cameras to record panoramic videos during the campaign period.
  2. A Vaisala weather station to perform measurements of pressure, wind direction and intensity, temperature and relative humidity.
  3. A ZEN radiometer to measure how much light was absorbed by the dust at different wavelengths.

The objective of having the two main instruments at two different locations was observe the dust lifting events from different perspectives.

During the campaign, we observed a large number of dust devils (many more than 10) and dust lifting events produced by wind gusts (over 10). For each dust lifting, we recorded the dust devil distance, the size, duration and direction. To do this, we marked out concentric circles with radii of 25, 50, 75, 100, 125 and 150 m on the ground. This information along with the videos made by the cameras, helped us to establish the amount of dust lifted by the dust devil as well as their distances from the instruments. All the data collected for each event was key to establish the RDS and SIS capabilities for dust lifting characterisation on Mars.

The first two days of the campaign were characterised by high dust-loading conditions and frequent formations of dust lifting events produced by dust devils or wind gusts. During these two days, each dust lifting event registered by the cameras was also detected by RDS and SIS, with signals showing a sharp peak at the time when the event passed within the sensors field of view. Preliminary analysis suggests that we can infer from RDS and SIS signals the difference between dust lifting events produced by dust devils and those produced by wind gusts – an important result for the observations on Mars.

Makgadikgadi Salt Pans. Credit: Google
Figure 3. Map indicating the location selected for carrying out the field campaign in the southern part of Makgadikgadi Salt Pans (red square) and the village Rakops (black square) where different lodges are available.

The third day of campaign had to be cancelled due to rain. This resulted in a lower dust-loading conditions in the following days, and thus the amount of dust lifted by vortices or wind gusts was smaller compared to the first two days. 

Upon return to BIUST in Palapye on 6 October, we held a seminar for staff and students titled Atmospheric science on Mars: from Earth analogues to future planetary networks.

In summary, the campaign was a complete success. Our observations have demonstrated the capability of the RDS and SIS sensors to detect and characterise dust devils on Mars. The analysis of the signals along with the information acquired by the other instruments will allow us to quantitatively establish the sensors limit of detection. In addition, the rainy episode offered us the chance to study dust lifting events in different aerosol loading conditions.

Makgadikgadi Salt Pans TA Field Trip, 29 September - 7 October (Spanish Trip - Daniel Toledo)

20-EPN2-065Characterizing dust lifting events using the ground-based Mars-2020-RDS and ExoMars-2022-SIS radiometers. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871149.

20-EPN2-065: Characterising dust lifting events using ground-based Mars-2020 and ExoMars radiometers

20-EPN2-046: Characterising dust lifting events using the ground-based Mars-2020-RDS and ExoMars-2022-SIS radiometers

Visit by Daniel Toledo, INTA (Spain) to TA1.5 AU Makgadikgadi Salt Pans (Botswana).
Dates of visit: 29 September – 06 October 2021

Report Summary:

On Mars, the airborne dust is a critical factor that drives the weather and climate of the planet. Dust devils are thought to account for the ~50 % of the total dust budget, and they represent a continuous source of dust, present even outside the dust storms period. For these reasons they have been proposed as the main mechanism able to sustain the observed dust haze of the martian atmosphere. However, additional dust devil surveys covering long diurnal periods are needed to place quantitative constraints on the cycles of these events. In this regard, the present and future observations of the Radiation and Dust Sensor (RDS) and the Sun Irradiance Sensor (SIS), which are part of NASA Mars 2020 and ESA/Roscosmos ExoMars 2022 missions, offer a unique opportunity to monitoring dust devils at high temporal resolution from sunrise to sunset, and with an excellent spatial coverage.

The main goal of the field campaign in the Makgadikgadi Salts Pans (20-EPN2-065) was to study dust lifting events using the spare units of RDS and SIS. During the campaign (29 Sept to 6 Oct 2021), a large number of dust devils (>10) and dust lifting events produced by wind gusts (>10) were observed by RDS and SIS sensors. For each case, information on distance, size, temporal duration and direction was registered. This information along with observations made by other instruments (e.g. wind speed and direction), have allowed us to study the potential RDS and SIS capabilities for dust lifting characterisation on Mars.

Read full report.

Outreach report


Back to TA main page.

Back to Europlanet 2024 RI homepage.

Fast Track Call for Transnational Access Applications Launched

Fast Track Call for Transnational Access Applications Launched

The first “Fast Track” call for applications for the Europlanet 2024 Research Infrastructure (RI) Transnational Access (TA) programme opens on 1 October 2021. If you are interested in submitting an application, please consult the call page. You will have until 14:00 CET on 3 November 2021 to submit your application.

Due to the COVID-19 pandemic, the TA facilities and field sites from the Europlanet 2024 RI accumulated a large backlog of TA visits and the next official TA call for applications will thus be delayed to Easter 2022.

In the meantime, “Fast Track” TA calls for applications will be implemented to support “emergency applications” only, such as high impact science, career impact (PhD & post docs contracts) or field work only possible over summer 2022. Applicants will be required to first discuss their implementation plan with the TA host facility before submitting their application.

The TA programme supports all travel and local accommodation costs for European and international researchers to visit and conduct research at 24 accredited laboratory facilities in Europe and 7 planetary analogue field sites. The TA programme can support up to two researchers for each visit and can cover a time-period ranging from a few days to several weeks.

Please note that while the Europlanet 2024 RI TA programme is designed to primarily support planetary science and Earth science, applications from other research disciplines are also eligible and will be considered based on innovation and potential scientific and technological impact.

Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-016: Formation and fate of methyl formate isomers in space

20-EPN-016: Formation and fate of methyl formate isomers in space

Virtual visit by Dr Sergio Ioppolo (Queen Mary University of London, UK) to TA2.11 Atomki Ice Chamber for Astrophysics / Astrochemistry (ICA) (Hungary).
Dates of visit: 12 October 2020 – 31 March 2021

Report Summary: All isomers of C2H4O2, i.e. glycolaldehyde (HCOCH2OH), acetic acid (CH3COOH) and methyl formate (HCOOCH3), have been observed abundantly around the Galactic center, in dark clouds, and hot cores of the interstellar medium (ISM), as well as in some minor ice objects of the Solar System. However, their exact gas-grain formation and destruction pathway is still under debate. According to El-Abd et al. (2019), the observed column densities of methyl formate and acetic acid are well-correlated, and are likely simply tracking the relative total gas mass in star forming regions. Methyl formate and glycolaldehyde, however, display a stark dichotomy in their relative column densities. The latter findingsuggests that different formation/destruction routes are at play for the three isomers. To date, there is a strong laboratory evidence for an efficient production of glycolaldehyde, methyl formate, and acetic acid in the ISM (Gerakines et al. 1996; Bennett and Kaiser 2007; Modica et al. 2012).

During the TA 20-EPN-016 at the ion accelerator facility Atomki in Debrecen (Hungary), we have performed a systematic set of experiments using the novel ultrahigh vacuum ICA end station to investigate the formation and destruction pathways of C2H4O2 isomers and a variety of other interstellar complex organic molecules. The experimental campaign revealed to be successful as all the planned experiments were performed. Results aided the design of new potential key experiments that will be included in a future follow-up beamtime bid at the facility.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-044: Investigating molecular and isotopic fingerprints of life on Greenland Ice Sheet (GrIS) cryo-ecosystems with astrobiological interest for icy worlds.

20-EPN2-046: Investigating molecular and isotopic fingerprints of life on Greenland Ice Sheet (GrIS) cryo-ecosystems with astrobiological interest for icy worlds.

Visit by Laura Sánchez-García, Centro de Astrobiología (INTA-CSIC), Madrid, Spain, to TA1.4 AU Greenland Kangerlussuaq Field Site (Greenland).
Dates of visit: 19-25 July 2021

Report Summary:

Glacial systems are interesting for studying habitability and limits of life. They are extreme environments where indigenous microorganisms may survive prolonged exposure to sub-zero temperatures and background radiation for geological timescales. Glaciers and the surrounding cryo-environments (permafrost, glacial lakes, or melting streams) arise as relevant scenarios for studying the development of functional microbial cryo-ecosystems and may have implications in the search for past or extant life in icy worlds beyond the Earth. In the Solar System, Europa and Enceladus have been recognized as the icy worlds with highest likelihood to harbor life, largely because liquid water could be in contact with rocks. Both satellites are believed to contain a global ocean of salty water under a rigid icy crust that would provide the scenario for an interaction between briny water and rocks, and the conditions for life to arise.

The permanent Greenland Ice Sheet (GrIS) represents a possible analog of such icy worlds, constituting an important long-term repository of psychrophilic microorganisms. Around the GrIS, different formations such as glacial lakes, permafrost, or further peat soils represent diverse degree of succession upon the influence of the GrIS and its thermal destabilisation.

We propose investigating molecular and isotopic lipid biomarkers of microorganisms inhabiting different cryo-ecosystems at and around the GrIS to obtain clues of a potential life development on analogous extraterrestrial cold environments (ice sheet), and learning how ecosystems evolves (biological succession) when the ice cover retreats and gets exposed to the atmosphere (glacier-melting streams, bedrock-erosion sediments, lake sediments, glacial soils).

Read full report.

Outreach report


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-050: 26-Aluminium-26-Magnesium systematics of chondrules and clasts in unequilibriated ordinary chondrites

20-EPN-050: 26-Aluminium-26-Magnesium systematics of chondrules and clasts in unequilibriated ordinary chondrites

In-person visit by Audrey Bouvier (Universität Bayreuth, Germany) to TA2.9 Ion probe facility (IPF), CRPG (France).
Dates of visit: 7-11 June 2021

Chondrules are a major component of chondritic meteorites whose time and mechanism of formation are still debated. Inconsistencies in formation ages of chondrules have been found between ages determined by the absolute Pb-Pb chronometer or using the relative 26Al-26Mg chronometer. While the Pb-Pb ages suggest that chondrules formed continuously for about 4 Ma from the time of CAI formation, the 26Al-26Mg data show evidence that chondrules did not form until about 1.8 Ma after CAIs. One possible explanation could be a heterogeneous distribution of 26Al in the solar nebula.

To evaluate this hypothesis, we used secondary ionization mass spectrometry (SIMS) to date chondrules and clasts from unequilibrated ordinary chondrites with the 26Al-26Mg chronometer. Three chondrules from ordinary chondrites show resolvable excesses in 26Mg due to the decay of 26Al and formed around 2 Ma after CAI formation, consistent with previous studies. Analysis of a large igneous inclusion from Paposo 004 supports a formation age within 1 Ma after CAI. The presence of a relict olivine chondrule in this inclusion provides contextual evidence that chondrule formation must have taken place prior to this time.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-005: Cosmic-ray-induced chemistry in pure ices

20-EPN-005: Cosmic-ray-induced chemistry in pure ices

Virtual visit by Alexei Ivlev, Max Planck Institute for Extraterrestrial Physics (MPE) (Germany) to TA2.11 Atomki Ice Chamber for Astrophysics / Astrochemistry (ICA) (Hungary).
Dates of visit: 23 February – 05 July 2021

Report Summary: The principal aim of the project was a dedicated study of generic effects induced in pure astrophysical ice analogs due to their bombardment by cosmic rays with energies E in the vicinity of the maximum of electronic stopping power. It is known that the energy of ejected electrons, which are produced in primary ionization events, has a significant dependence on E in this energy range. 

Thus, by selecting pairs of beam energies on both sides of the Bragg peak, such that the corresponding stopping-power values are equal, we were able to probe the effect of electron-impact excitations of ice molecules. We selected CO films as the best irradiation target, for which the biggest variety of radiolysis products was expected and the most detailed predictions of chemical models were available. 

We found that the first radiolysis products, detected at the astrophysically relevant values of ion fluence, are very different from predictions of chemical models. At the same time, the reaction kinetics shows no statistically significant difference between ion beams of same stopping power. This rules out the importance of electron-impact excitation in radiolysis chemistry of CO, and suggests that this process may generally be negligible compared to the chemistry driven by CR heating (determined by the stopping power value). On the other hand, by comparing the sputtering yields measured for beams of same stopping power, we discovered a significant asymmetry, with the yield at lower energies being up to a factor of two larger that at higher energies.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-046: Dust-carbon-climate feedbacks tested through detailed independent dating of Arctic wind-blown dust sequences on Greenland

20-EPN2-046: Dust-carbon-climate feedbacks tested through detailed independent dating of Arctic wind-blown dust sequences on Greenland.

Visit by Thomas Stevens, Uppsala University (Sweden) to TA1.4 AU Greenland Kangerlussuaq Field Site (Greenland).
Dates of visit: 19-25 July 2021

Report Summary: The aim of this field campaign was to investigate the dynamics of aeolian mineral dust activity and organic carbon burial in western Greenland. Dust is an important component of the global climate system, and investigating its mobilisation, transport and deposition can reveal important information about regional climate and environmental development during the Holocene. Carbon burial in permafrost is one of the main mechanisms by which carbon is sequestered from the atmosphere, and may be linked to dust activity in high latitudes. The work focused on the area between the Greenland Ice Sheet margin and Kangerlussuaq, which represents a range of environmental conditions depending on distance from the ice sheet. We collected modern analogue samples of terrestrial windblown dust (loess) deposits to test and compare the performance of optically stimulated luminescence and radiocarbon dating. These samples were taken at a high-resolution from the surface of the deposits and thus represent recent aeolian activity. Furthermore, we targeted aeolian deposits containing palaeosol layers to be able to independently compare radiocarbon and luminescence ages, and to identify climate phases which were favourable for soil formation and carbon burial. In addition to purely aeolian sediments, peat bogs were also sampled.

These highly organic deposits complement the nearly purely minerogenic loess deposits because they effectively capture and preserve fine-grained wind-blown sediments. Further analysis of these samples and the use of different climate and carbon burial proxies will reveal important details of the regional climate history, dust-carbon burial dynamics, and provide insights into ice-proximal wind dynamics.

Read full report.

Outreach report


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-089: UPSIDES – Unravelling icy Planetary Surfaces: Insights on their tectonic DEformation from field Survey

20-EPN-089: UPSIDES – Unravelling icy Planetary Surfaces: 
Insights on their tectonic DEformation from field Survey.

Visit by Costanza Rossi, INAF – Astronomical Observatory of Padova (Italy) to TA1.4 AU Greenland Kangerlussuaq Field Site (Greenland).
Dates of visit: 19-25 July 2021

Report Summary: The Isunguata Sermia and Russell glaciers represent optimal analogues for the study of deformation in glacial environments and their comparison with deformation that affects the icy satellites of Jupiter and Saturn. The aim of UPSIDES project concerns the relation of tectonic structures from the outcrop to the regional scale with multi-scalar investigation which can provide significant support for planetary analysis. The collection of field data has been significant to find scaling laws between tectonic structures in glaciers and in icy satellite surfaces, and the behaviour at depth of their tectonic structures.

The successful fieldwork in the Kangerlussuaq area enabled the identification of tectonic structures in representative areas of the Isunguata Sermia (southern margin) and Russell glaciers (northern margin and terminus). More than 250 data have been collected from 31 field measurement stations including high dip- and low dip-structures, originated by different stress fields caused by the westward flow of both glaciers. We recognized high dip-extensional fractures approximately E-W and NE-SW trending at the Russell glacier. On the other hand, NNW-SSE trending fractures and low-angle faults, such as compressional thrusts/shear planes, have been detected at the Isunguata Sermia. From satellite imagery and aerial photos, we detected consistent structural orientations with the structures identified in outcrop. A similar correlation will be applied to the structures recognised by remote sensing on the icy satellites. Additionally, at the outcrop scale we identified structures acting as preferential way of fluid circulation. We performed measurements also in rock outcrops near the glacier to understand the relationship between bedrock morpho-tectonics and ice drainage that in turn control the measured glacial deformation.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-014: Constraining CO2 uptake and release through chemical weathering pathways in a young, active orogen

20-EPN-014: Constraining CO2 uptake and release through chemical weathering pathways in a young, active orogen.

Visit by Erica Erlanger, GFZ Potsdam (Germany) to TA2.10 Stable, Rare Gas and Radiogenic Isotope Facility at CRPG (France).
Dates of visit: 14-21 June 2021

Report Summary: Young, active orogens often retain an intact sedimentary cover that is composed of marine sequences, which can host large volumes of carbonate and sulfuric acid-producing minerals, such as pyrite. Unlike silicate weathering, which is responsible for CO2 drawdown over geologic timescales, sulfuric acid weathering of carbonates has the potential to release COinto the atmosphere that was previously trapped in rock. The goals of this study are to calculate the overall carbon budget for the Central Apennines, a young, active orogen, and to understand the mechanisms for the release and drawdown of CO2 in this landscape. 
Compiling a representative assessment of chemical weathering fluxes requires an understanding of the possible variability between seasons. To this end, the objective of my TA visit to the CRPG in Nancy, France was to process riverine water samples collected in winter of 2021 for δ34SSO4, δ18OSO4, and  δ13CDIC. These samples are replicate analyses of samples from summer 2020, and provide a direct comparison of isotopic signatures between the hot and dry summer versus the wet and cool winter. Preliminary results show that δ34S signatures are similar between winter and summer for spring and groundwater samples, whereas river samples are more enriched in summer. Further analysis and results from other isotopic systems will help elucidate the major sources of variability that we observe in the river samples. 

Read full report.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-043: A Systematic Study of Sulfur Ion Radiolysis of Simple Oxide Ices

20-EPN-043: A Systematic Study of Sulfur Ion Radiolysis of Simple Oxide Ices.

Visit by Zuzana Kanuchova (virtual participation), Astronomical Institute od Slovak Academy of Sciences (Slovakia) and Duncan Mifsud (in-person participation), University of Kent (UK) to TA2.11 Atomki Ice Chamber for Astrophysics / Astrochemistry (ICA) (Hungary).
Dates of visit: 30 November – 4 December 2020 and 25-29 January 2021

Report Summary: We have implanted 290 keV S+ ions in a variety of simple oxide ices, including CO, CO2, H2O, N2O, O2, and CO:N2O at 20 K, as well as CO2 and H2O at 70 K. Our aim was to determine whether such implantations could result in the formation of sulfur-bearing product molecules, particularly SOwhich has been detected at the surfaces of several icy Solar System moons. 

The performed experiments suffered from initial setbacks in the form of unexpected and significant sputtering of the astrophysical ice analogues during irradiation. In order to mitigate this sputtering, we made use of two different experimental techinques; (i) via simultaneous deposition and irradiation of the ice analogue in cases where we knew gas phase chemistry to be negligible, and (ii) via creation of a very thick (~3-5 μm) ice and a slow rate of implantation. Once these initial problems were solved, we were able to successfully carry out implantations into the six ices mentioned above. 

Our work has indicated that although sulfur-bearing molecules (such as OCS and H2SO4 hydrates) may form as a result of such implantations, SO2 formation was not detected in most experiments, except at high fluence (~1016 ions/cm2) implantations in CO. Such results have important implications for the icy Galilean satellites of Jupiter, suggesting that the SO2 present there may be formed by endogenic processes at the lunar surfaces.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-017: LITRASV – Life in TRAvertine-Sinter Veins

20-EPN-017: LITRASV – Life in TRAvertine-Sinter Veins: a possible key to recognize extra-terrestrial life in tectonically-driven depositional systems.

Visit by Enrico Capezzuoli, University of Florence and Andrea Brogi, University of Bari (Italy) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 04-10 July 2021

Report Summary: Detailed study of travertine and sinter depositional systems and related feeder conduits (veins) in cold desertic setting (Lýsuhóll and Hveravellir sites- Iceland), as possible repository of subsurface life to be observed in extra-terrestrial setting. The performed field activity allows reconstruction of the structural control in these sinter/travertine depositional systems, with stratigraphic-sedimentological characterisation of the travertine-sinter lithofacies. 16 travertine/sinter samples were collected from the two sites, together with the basic physical characterization of the thermal springs (T, pH, Cond). Due to the local conditions, all the collected samples derive from fossil/inactive systems (veins and crusts samples). Among these, one sample derives from a sinter vein recognized in the Lýsuhóll site, while all other derive from fossil vents or close surroundings.

Samples returned to Italy for future petrographic and geochemical characterization in order to detect and define possible organic presence in such an extreme environment.

Read full report.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-032: Radioresistance of aromatic complex organic molecules

20-EPN-032: Radioresistance of aromatic complex organic molecules: nucleobases.

Virtual visit by Hermann Rothard, CIMAP (Caen, F) CNRS (France) to TA2.11 Atomki Ice Chamber for Astrophysics / Astrochemistry (ICA) (Hungary).
Dates of visit: 17 May – 02 July 2021

Report Summary: Complex molecules (including amino acids and nucleobases) can be formed in cold space environments conditions (e.g. dense molecular clouds, outer solar system) by e.g. UV irradiation and ion bombardment of ices containing simple molecules. Consequently, the radiation resistance of such complex molecules in order to determine their survival times in space should be investigated. We therefore studied the radiolysis and radio-resistance of the purine nucleobase (Adenine, two aromatic rings) in solid phase as a function of temperature (20-300 K) with H (0.8 MeV) and He (3.2 MeV) beams at ATOMKI. This first systematic study of the influence of the temperature revealed that Adenine is found to be significantly (of the order of 50%) more radio-resistant at high temperatures. At low temperatures T < 50K, Adenine is more radiosensitive (higher cross sections).

The results are preliminary and analysis is ongoing. Furthermore, we found that the destruction cross sections scales with the electronic stopping stopping following a power law with a stronger than linear dependence.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-012: Discovering the origin of dissolved gases in CO2-rich mineral groundwaters from Aquae Spadanae

20-EPN2-012: Discovering the origin of dissolved gases in CO2-rich mineral groundwaters from Aquae Spadanae (Spa, eastern Belgium).

Visit by Agathe Defourny, University of Liège (Belgium), to TA2.10 Stable, Rare Gas and Radiogenic Isotope Facility at CRPG (France).
Dates of visit: 21 June – 02 July 2021

Report Summary: The visit at CRPG aimed at better assessing the origin of dissolved CO2 found in naturally sparkling groundwater springs from the east of Belgium. Previous analysis on δ13C had shown that the carbon could be either from mantellic or sedimentary (dissolved carbonates) origin, but a clear distinction between both could not be made. The goal of the stay at CRPG was then to focus on the analysis on other dissolved gases, in particular He and Ne. The combination of their isotopic signature, together with the isotopic composition of carbon is a powerful tool to highlight degassing from either crustal or mantel origin.

The results were really clear. The majority of the 4He/20Ne ratios stands between 50 and 500, indicating that more than 99% of the helium is not atmospheric and result from a mixture of crustal and mantellic gaz. Moreover, the ratio between CO2/3He (~109) versus δ13C (from -8 to -2 ‰) clearly shows that the dissolved COin theses springs is from mantellic origin. 

A few samples from non-carbogazeous springs from the same area were also collected and analysed and present a very different signature, with more negative δ13C values, and lower 4He/20Ne ratios. The measured value could be compared to different samples from the literature, particularly gas samples from the Eifel volcanic fields, at the border with Germany, showing very similar signatures. We can hence conclude with a high confidence level that the gases dissolved in the naturally sparkling spring from eastern Belgium come from the degassing of the Eifel mantellic plume, at a distance of about 100 km.