20-EPN-005: Cosmic-ray-induced chemistry in pure ices

20-EPN-005: Cosmic-ray-induced chemistry in pure ices

Virtual visit by Alexei Ivlev, Max Planck Institute for Extraterrestrial Physics (MPE) (Germany) to TA2.11 Atomki Ice Chamber for Astrophysics / Astrochemistry (ICA) (Hungary).
Dates of visit: 23 February – 05 July 2021

Report Summary: The principal aim of the project was a dedicated study of generic effects induced in pure astrophysical ice analogs due to their bombardment by cosmic rays with energies E in the vicinity of the maximum of electronic stopping power. It is known that the energy of ejected electrons, which are produced in primary ionization events, has a significant dependence on E in this energy range. 

Thus, by selecting pairs of beam energies on both sides of the Bragg peak, such that the corresponding stopping-power values are equal, we were able to probe the effect of electron-impact excitations of ice molecules. We selected CO films as the best irradiation target, for which the biggest variety of radiolysis products was expected and the most detailed predictions of chemical models were available. 

We found that the first radiolysis products, detected at the astrophysically relevant values of ion fluence, are very different from predictions of chemical models. At the same time, the reaction kinetics shows no statistically significant difference between ion beams of same stopping power. This rules out the importance of electron-impact excitation in radiolysis chemistry of CO, and suggests that this process may generally be negligible compared to the chemistry driven by CR heating (determined by the stopping power value). On the other hand, by comparing the sputtering yields measured for beams of same stopping power, we discovered a significant asymmetry, with the yield at lower energies being up to a factor of two larger that at higher energies.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-046: Dust-carbon-climate feedbacks tested through detailed independent dating of Arctic wind-blown dust sequences on Greenland

20-EPN2-046: Dust-carbon-climate feedbacks tested through detailed independent dating of Arctic wind-blown dust sequences on Greenland.

Visit by Thomas Stevens, Uppsala University (Sweden) to TA1.4 AU Greenland Kangerlussuaq Field Site (Greenland).
Dates of visit: 19-25 July 2021

Report Summary: The aim of this field campaign was to investigate the dynamics of aeolian mineral dust activity and organic carbon burial in western Greenland. Dust is an important component of the global climate system, and investigating its mobilisation, transport and deposition can reveal important information about regional climate and environmental development during the Holocene. Carbon burial in permafrost is one of the main mechanisms by which carbon is sequestered from the atmosphere, and may be linked to dust activity in high latitudes. The work focused on the area between the Greenland Ice Sheet margin and Kangerlussuaq, which represents a range of environmental conditions depending on distance from the ice sheet. We collected modern analogue samples of terrestrial windblown dust (loess) deposits to test and compare the performance of optically stimulated luminescence and radiocarbon dating. These samples were taken at a high-resolution from the surface of the deposits and thus represent recent aeolian activity. Furthermore, we targeted aeolian deposits containing palaeosol layers to be able to independently compare radiocarbon and luminescence ages, and to identify climate phases which were favourable for soil formation and carbon burial. In addition to purely aeolian sediments, peat bogs were also sampled.

These highly organic deposits complement the nearly purely minerogenic loess deposits because they effectively capture and preserve fine-grained wind-blown sediments. Further analysis of these samples and the use of different climate and carbon burial proxies will reveal important details of the regional climate history, dust-carbon burial dynamics, and provide insights into ice-proximal wind dynamics.

Read full report.

Outreach report


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-089: UPSIDES – Unravelling icy Planetary Surfaces: Insights on their tectonic DEformation from field Survey

20-EPN-014: UPSIDES – Unravelling icy Planetary Surfaces: 
Insights on their tectonic DEformation from field Survey.

Visit by Costanza Rossi, INAF – Astronomical Observatory of Padova (Italy) to at TA1.4 AU Greenland Kangerlussuaq Field Site (Greenland).
Dates of visit: 19-25 July 2021

Report Summary: The Isunguata Sermia and Russell glaciers represent optimal analogues for the study of deformation in glacial environments and their comparison with deformation that affects the icy satellites of Jupiter and Saturn. The aim of UPSIDES project concerns the relation of tectonic structures from the outcrop to the regional scale with multi-scalar investigation which can provide significant support for planetary analysis. The collection of field data has been significant to find scaling laws between tectonic structures in glaciers and in icy satellite surfaces, and the behaviour at depth of their tectonic structures.

The successful fieldwork in the Kangerlussuaq area enabled the identification of tectonic structures in representative areas of the Isunguata Sermia (southern margin) and Russell glaciers (northern margin and terminus). More than 250 data have been collected from 31 field measurement stations including high dip- and low dip-structures, originated by different stress fields caused by the westward flow of both glaciers. We recognized high dip-extensional fractures approximately E-W and NE-SW trending at the Russell glacier. On the other hand, NNW-SSE trending fractures and low-angle faults, such as compressional thrusts/shear planes, have been detected at the Isunguata Sermia. From satellite imagery and aerial photos, we detected consistent structural orientations with the structures identified in outcrop. A similar correlation will be applied to the structures recognised by remote sensing on the icy satellites. Additionally, at the outcrop scale we identified structures acting as preferential way of fluid circulation. We performed measurements also in rock outcrops near the glacier to understand the relationship between bedrock morpho-tectonics and ice drainage that in turn control the measured glacial deformation.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-014: Constraining CO2 uptake and release through chemical weathering pathways in a young, active orogen

20-EPN-014: Constraining CO2 uptake and release through chemical weathering pathways in a young, active orogen.

Visit by Erica Erlanger, GFZ Potsdam (Germany) to TA2.10 Stable, Rare Gas and Radiogenic Isotope Facility at CRPG (France).
Dates of visit: 14-21 June 2021

Report Summary: Young, active orogens often retain an intact sedimentary cover that is composed of marine sequences, which can host large volumes of carbonate and sulfuric acid-producing minerals, such as pyrite. Unlike silicate weathering, which is responsible for CO2 drawdown over geologic timescales, sulfuric acid weathering of carbonates has the potential to release COinto the atmosphere that was previously trapped in rock. The goals of this study are to calculate the overall carbon budget for the Central Apennines, a young, active orogen, and to understand the mechanisms for the release and drawdown of CO2 in this landscape. 
Compiling a representative assessment of chemical weathering fluxes requires an understanding of the possible variability between seasons. To this end, the objective of my TA visit to the CRPG in Nancy, France was to process riverine water samples collected in winter of 2021 for δ34SSO4, δ18OSO4, and  δ13CDIC. These samples are replicate analyses of samples from summer 2020, and provide a direct comparison of isotopic signatures between the hot and dry summer versus the wet and cool winter. Preliminary results show that δ34S signatures are similar between winter and summer for spring and groundwater samples, whereas river samples are more enriched in summer. Further analysis and results from other isotopic systems will help elucidate the major sources of variability that we observe in the river samples. 

Read full report.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-043: A Systematic Study of Sulfur Ion Radiolysis of Simple Oxide Ices

20-EPN-043: A Systematic Study of Sulfur Ion Radiolysis of Simple Oxide Ices.

Visit by Zuzana Kanuchova (virtual participation), Astronomical Institute od Slovak Academy of Sciences (Slovakia) and Duncan Mifsud (in-person participation), University of Kent (UK) to TA2.11 Atomki Ice Chamber for Astrophysics / Astrochemistry (ICA) (Hungary).
Dates of visit: 30 November – 4 December 2020 and 25-29 January 2021

Report Summary: We have implanted 290 keV S+ ions in a variety of simple oxide ices, including CO, CO2, H2O, N2O, O2, and CO:N2O at 20 K, as well as CO2 and H2O at 70 K. Our aim was to determine whether such implantations could result in the formation of sulfur-bearing product molecules, particularly SOwhich has been detected at the surfaces of several icy Solar System moons. 

The performed experiments suffered from initial setbacks in the form of unexpected and significant sputtering of the astrophysical ice analogues during irradiation. In order to mitigate this sputtering, we made use of two different experimental techinques; (i) via simultaneous deposition and irradiation of the ice analogue in cases where we knew gas phase chemistry to be negligible, and (ii) via creation of a very thick (~3-5 μm) ice and a slow rate of implantation. Once these initial problems were solved, we were able to successfully carry out implantations into the six ices mentioned above. 

Our work has indicated that although sulfur-bearing molecules (such as OCS and H2SO4 hydrates) may form as a result of such implantations, SO2 formation was not detected in most experiments, except at high fluence (~1016 ions/cm2) implantations in CO. Such results have important implications for the icy Galilean satellites of Jupiter, suggesting that the SO2 present there may be formed by endogenic processes at the lunar surfaces.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-017: LITRASV – Life in TRAvertine-Sinter Veins

20-EPN-017: LITRASV – Life in TRAvertine-Sinter Veins: a possible key to recognize extra-terrestrial life in tectonically-driven depositional systems.

Visit by Enrico Capezzuoli, University of Florence and Andrea Brogi, University of Bari (Italy) to TA1 – Iceland Field Sites, MATIS
Dates of visit: 04-10 July 2021

Report Summary: Detailed study of travertine and sinter depositional systems and related feeder conduits (veins) in cold desertic setting (Lýsuhóll and Hveravellir sites- Iceland), as possible repository of subsurface life to be observed in extra-terrestrial setting. The performed field activity allows reconstruction of the structural control in these sinter/travertine depositional systems, with stratigraphic-sedimentological characterisation of the travertine-sinter lithofacies. 16 travertine/sinter samples were collected from the two sites, together with the basic physical characterization of the thermal springs (T, pH, Cond). Due to the local conditions, all the collected samples derive from fossil/inactive systems (veins and crusts samples). Among these, one sample derives from a sinter vein recognized in the Lýsuhóll site, while all other derive from fossil vents or close surroundings.

Samples returned to Italy for future petrographic and geochemical characterization in order to detect and define possible organic presence in such an extreme environment.

Read full report.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-032: Radioresistance of aromatic complex organic molecules

20-EPN-032: Radioresistance of aromatic complex organic molecules: nucleobases.

Virtual visit by Hermann Rothard, CIMAP (Caen, F) CNRS (France) to TA2.11 Atomki Ice Chamber for Astrophysics / Astrochemistry (ICA) (Hungary).
Dates of visit: 17 May – 02 July 2021

Report Summary: Complex molecules (including amino acids and nucleobases) can be formed in cold space environments conditions (e.g. dense molecular clouds, outer solar system) by e.g. UV irradiation and ion bombardment of ices containing simple molecules. Consequently, the radiation resistance of such complex molecules in order to determine their survival times in space should be investigated. We therefore studied the radiolysis and radio-resistance of the purine nucleobase (Adenine, two aromatic rings) in solid phase as a function of temperature (20-300 K) with H (0.8 MeV) and He (3.2 MeV) beams at ATOMKI. This first systematic study of the influence of the temperature revealed that Adenine is found to be significantly (of the order of 50%) more radio-resistant at high temperatures. At low temperatures T < 50K, Adenine is more radiosensitive (higher cross sections).

The results are preliminary and analysis is ongoing. Furthermore, we found that the destruction cross sections scales with the electronic stopping stopping following a power law with a stronger than linear dependence.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-012: Discovering the origin of dissolved gases in CO2-rich mineral groundwaters from Aquae Spadanae

20-EPN2-012: Discovering the origin of dissolved gases in CO2-rich mineral groundwaters from Aquae Spadanae (Spa, eastern Belgium).

Visit by Agathe Defourny, University of Liège (Belgium), to TA2.10 Stable, Rare Gas and Radiogenic Isotope Facility at CRPG (France).
Dates of visit: 21 June – 02 July 2021

Report Summary: The visit at CRPG aimed at better assessing the origin of dissolved CO2 found in naturally sparkling groundwater springs from the east of Belgium. Previous analysis on δ13C had shown that the carbon could be either from mantellic or sedimentary (dissolved carbonates) origin, but a clear distinction between both could not be made. The goal of the stay at CRPG was then to focus on the analysis on other dissolved gases, in particular He and Ne. The combination of their isotopic signature, together with the isotopic composition of carbon is a powerful tool to highlight degassing from either crustal or mantel origin.

The results were really clear. The majority of the 4He/20Ne ratios stands between 50 and 500, indicating that more than 99% of the helium is not atmospheric and result from a mixture of crustal and mantellic gaz. Moreover, the ratio between CO2/3He (~109) versus δ13C (from -8 to -2 ‰) clearly shows that the dissolved COin theses springs is from mantellic origin. 

A few samples from non-carbogazeous springs from the same area were also collected and analysed and present a very different signature, with more negative δ13C values, and lower 4He/20Ne ratios. The measured value could be compared to different samples from the literature, particularly gas samples from the Eifel volcanic fields, at the border with Germany, showing very similar signatures. We can hence conclude with a high confidence level that the gases dissolved in the naturally sparkling spring from eastern Belgium come from the degassing of the Eifel mantellic plume, at a distance of about 100 km. 

20-EPN-029: VIS-NIR reflectance analysis of analogue mixture representative of young Haulani crater on Ceres

20-EPN-029: VIS-NIR reflectance analysis of analogue mixture representative of young Haulani crater on Ceres to assess the mineralogical composition of bright areas.

Visit by Fabrizio Dirri, IAPS-INAF (Italy), to TA2.8 CSS (Cold Surfaces Spectroscopy) at IPAG (France).
Dates of visit: 15-26 March 2021

Report Summary: In this project different bright areas of Haulani crater (e.g. Southern floor, i.e. ROI3 and North-east crater wall, i.e. ROI4) on Ceres have been studied by arranging different analogue mixtures and comparing them with Dawn VIR data. The end-members have been identified based on previous studies (Tosi et al. 2018, 2019) and the analogue mixtures have been produced with grain size 50-100µm for two bright crater regions. The two initial mixtures have been acquired in the VIS-NIR spectral range (0.35-4.5µm) at low temperature, i.e. from 200K to 300K similar to Haulani by using Cold Spectroscopy Facility (CSS) (IPAG, France). 

By comparing the spectral parameters (Band Center, Band Depth and FWHM of absorption bands at 2.7, 3.1, 3.4µm, spectral slope in the 1.2-1.9µm range and reflectance level at 2.1µm) with the obtained spectra of mixtures and VIR data, the best candidate to reproduce Haulani’ bright areas is the mixture A3-8. That mixture exhibits values for the 2.7BD (Antigorite, Illite), 3.1BD (NH4-Montmorillonite), 3.4 BD (NaCO3) and the 3.1 µm FWHM very close to Haulani ROI3 and ROI4. In order to better reproduce Haulani areas some improvements may be performed in the next future, e.g., by changing the dark component with a mixture of graphite plus magnetite to better reproduce the spectral slope of Haulani or by adding hydrous natrite in low percentage to the mixture, e.g. 2-8% to assess the role of this component found in Haulani bright areas and how is the contribution to 2.7 µm spectral band.

Read full report (published with kind permission of Dr Dirri).


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN-042: Reflectance spectroscopy of ammonium-bearing minerals

20-EPN-042: Reflectance spectroscopy of ammonium-bearing minerals – A tool to improve the knowledge of the surface of icy planetary bodies.

Visit by Maximiliano Fastelli, University of Perugia (Italy), to TA2.8 CSS (Cold Surfaces Spectroscopy) at IPAG (France).
Dates of visit: 09-27 November 2020

Report Summary: In the frame of the Europlanet 2024 1st TA call, reflectance VIS-NIR spectra were collected. Ten different temperature steps were chosen to collect cryogenic data: 270-245-220-180-160-140-120-100-90-270 up K.

For the samples characterized by a low temperature phase transitions (mascagnite (NH4)2SO4, sal-ammoniac NH4Cl, ammonium phosphate (NH4)H2PO4, tschermigite (NH4)Al(SO4)2·12(H2O) and ammonium nitrate NH4NO3), the measurement steps have been increased in the proximity of the expected temperature of mineral transformation. Cooling and heating experiments, using the same cooling/heating rate, were performed to break the phase transition T. In particular, mascagnite, sal-amoniac and ammonium phosphate monobasic samples showed clear and very interesting spectral bands variations during cooling, indicating that a phase transition occurred. Spectra were collected with three different grain size (150/125 – 125/80 – 80/32 μm) in the spectral range from 1 to 4.8 μm. 

The collected data will help on the interpretation of VIR remote spectra from Europa, Pluto’s moons, Enceladus and other icy celestial bodies surface where NH4 minerals have been supposed to occur. Moreover, the study of ammonium bearing minerals and their behavior at very low temperature might give information on how the phase transition affects the bands position and shapes inside the reflectance spectra. Overtones and combinations of NH4 bands are in the 1-3 μm range, whereas fundamental vibrational modes (ν1 and ν3) are present in the ~3 μm area.


Back to TA main page.

Back to Europlanet 2024 RI homepage.

20-EPN2-088: High spectral resolution / low-temperature IR study of carbonates

20-EPN2-088: High spectral resolution / low-temperature IR study of carbonates.

Virtual visit by Simone De Angelis and Cristian Carli, IAPS-INAF(Italy), to TA2.8 CSS (Cold Surfaces Spectroscopy) at IPAG (France).
Dates of visit: 11 May – 04 June 2021

Report Summary: We planned to acquire reflectance spectra of anhydrous carbonates in the infrared range (3.2-4.6 μm), at high spectral sampling/resolution and at different cryogenic temperatures in the range 60-270K. 

The analysed materials were calcite, dolomite, siderite, natrite, malachite and magnesite; all the minerals were prepared and measured at fine powders, d<50 μm.  These measurements provide new spectral data in the IR that will be useful in the interpretation  of remote-sensing spectroscopic observations of Solar System rocky bodies such as Mars, Jovian satellites and minor bodies by current and future missions (Mars 2020, ExoMars-2022, JUICE, Europa Clipper, OSIRIS-REx). 


Back to TA main page.

Back to Europlanet 2024 RI homepage.