20-EPN2-116: Hypervelocity Impacts for DISC Calibration

20-EPN2-116: HIDISCC (Hypervelocity Impacts for DISC Calibration)

Visit by Vincenzo Della Corte, Osservatorio Astronomico Capodimonte Napoli, INAF (Italy), to TA2.7 Light Gas Gun Laboratory, University of Kent (UK)
Dates of visit: 27-29 March 2023

Report summary: The Comet Interceptor space mission is to launch in 2029 to study a dynamically new comet. Two of the three spacecraft involved will host copies of the Dust Impact Sensor and Counter
(DISC), which will measure the physical properties of cometary dust. The spacecraft’s velocity (7-70 km/s) will result in hypervelocity dust impacts on DISC. Combined with the range of dust particle sizes, this will create a wide range of impact momentum (10-11–10-3 kg/m/s). To cover the upper part of the momentum range, DISC calibration will be performed with hypervelocity simulated impacts induced by lasers. To perform DISC characterization and calibration in the lower momentum range, we carried out experiments at the Light Gas Gun Impact Facility at the University of Kent (UK).
To calibrate DISC and check the sensing element formed by the aluminum plate and the
piezoelectric transducers:

  • We performed 9 shots at the Light Gas Gun Impact Facility at the University of Kent.
    We used different particle sizes and materials and different speeds, utilising different
    approaches, i.e. single particles with diameters down to 400 nm and buck-shots of a
    mixture of minerals and very light hollow spheres.
  • The signals from the piezoelectrics will be used to verify DISC estimated
    performance and enable a generally-valid impact sensor calibration procedure.
    All 9 shots provided signals, this was for both single impacts and multiple buck- shot impacts.
    The results of the experiment confirmed the capability of the instrument to measure the
    momentum of particles impacting in the hypervelocity range.

Read the full scientific report, with kind permission from Vincenzo Della Corte.


22-EPN3-060: A new apparatus for measuring the electrical charge of volcanic ash particles

22-EPN3-060: A new apparatus for measuring the electrical charge of volcanic ash particles

Visit by Allan Fries, University of Geneva (Switzerland), to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark)
Dates of visit: 02-11 August 2023

Report summary: The electrical charge carried by volcanic ash particles is known to play a crucial role in the formation of aggregates, which modulate the atmospheric transport and deposition rate of volcanic ash. However, direct field measurements of these charges remain rare, and more investigations are required to better comprehend both charge generation and aggregation mechanisms. This study aimed at building and testing a portable device to quantify the charge of individual volcanic ash particles and aggregates using a Through-Type Faraday Cage (TTFC) connected to a charge amplifier circuit capable of detecting the very small voltages induced by charged particles entering the TTFC.

After building the apparatus, 187 tests were performed, using different quantities and types of particles, as well as varying the measurement technique. First results show that the newly built device is capable of measuring charges down to 0.1 pC and that measurements agree well with alternative estimations obtained by directly integrating the current generated in the TTFC over time.

Beside the charge, results also suggest that the device can be used to obtain the particle settling velocity, based on the duration of the voltage signal. Few additionnal tests are now required to detect smaller particles (i.e., smaller charges) and the instrument will then be used for field analysis and laboratory experiments.

Read the full scientific report, with kind permission from Allan Fries.


22-EPN3-061: CO2 Ice Crystals Formation Under Conditions in the Martian Polar Regions

22-EPN3-061: CO2 Ice Crystals Formation Under Conditions in the Martian Polar Regions: Influence of Substrate Properties and Temperature Gradient

Visit by Ganna Portyankina, DLR (Germany), to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark)
Dates of visit: 30 April – 01 October 2023 (two visits)

Report summary: The main goal of most recent tests conducted at the Planetary Environment Facilities at Aarhus University was to condense CO2 from the chamber’s atmosphere under Martian conditions onto a specially designed set of different surface materials (martian regolith simulant, glass beads of various sizes, dust). We investigated ranges of temperatures and pressures and observed the texture of the created CO2 ice. Our goal was to determine if CO2 deposits over regolith/glass beads/dust differently compared to brushed aluminium. We have observed that various properties of substrate did not considerably alter the deposition morphologies of CO2 observed in our previous work. Most importantly, we find that under conditions usual for Martian polar areas in fall and winter, CO2 ice always deposits as a translucent slab.  Under deviating conditions, i.e. colder temperatures and lower pressures, CO2crystals assume different shapes including opaque slab and highly porous multi-crystalline. Such CO2crystalline morphologies require further investigations, because of their relevance to icy satellite surfaces as well as CO2 cloud formation.

Read the full scientific report, with kind permission from Ganna Portyankina.


20-EPN-027: Characterisation of the response of an Optical Particle Counter in a simulated Martian environment

20-EPN-027: Characterisation of the response of an Optical Particle Counter in a simulated Martian environment

Visit by Giuseppe Mongelluzzo and Gabriele Franzese, INAF (Italy), to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark)
Dates of visit: 05-09 September 2022

Report summary: The characterisation of dust is paramount in the understanding of Martian climatology. Dust significantly influences Mars global climate, interacting with the incoming solar radiation, altering the atmospheric temperature budget. Local and global dust storms can cover the planet for weeks, influencing the correct functioning of scientific instruments on the surface (The Rover “Opportunity” is the most famous example). The dynamics of dust lifting is strictly related to the wind velocity field, so its characterisation would provide important information on the characteristics of Martian winds.

The proposing team has developed an Optical Particle Counter (OPC) aimed at providing direct measurements of grain concentration and size distribution on Mars, which would be the first ever accomplished outside of Earth. The instrument is able to detect dust grains in the 0.4-20 μm diameter range. Both the breadboard and the flight model versions of the instrument have been tested in Martian environment, showing good performances.

The trip to the Planetary Environment Facilities at the University of Aarhus has allowed the verification that the instrument is correctly able to sample dust grains in its upper sensible range (up to 20 µm in grain diameter) also in presence of winds up to 20 m/s. A sandbed with embedded dust has also been created inside the Martian wind tunnel, allowing the simulation of natural saltation conditions. The instrument has been able to retrieve dust grains in all simulated conditions, both for monodispersed calibrated dust samples and for polydisperse samples.  

Read the full scientific report, with kind permission from Giuseppe Mongelluzzo.


20-EPN2-050: Turbulent suspensions of volcanic ash

20-EPN2-050: Turbulent suspensions of volcanic ash: an experimental simulation for eruptive and resuspension ash plumes

Visit by Jacopo Taddeucci and Elisabetta Del Bello, Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy), to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark)
Dates of visit: 07-11 November 2022

Report summary: Ash Injection and settling experiments have been carried out using the environmentally controlled recirculating wind tunnel facility at Aarhus University, in order to understand the processes controlling deposition and segregation of ash from volcanic plumes at stratospheric altitudes.

Ash particles erupted from the Campi Flegrei volcano (Italy) and smaller than 63 micron were injected in the wind tunnel either from the upwind extremity in the presence of wind (1 m/s) or from the side in the absence of wind. The atmospheric pressure in the wind tunnel was systematically varied to simulate the corresponding elevation in the atmosphere from 10 to 50 km. The vertical and horizontal velocity of the particles was measured, as well as the plume opacity, proxy for particle concentration over time.

Settled particles were sampled at different times during the experiments and then analysed for their abundance and size distribution. Both the opacity measurements and the number of particles sampled over time display the decay of particle concentration over time in the suspended plume. The rate of decay is strongly dependent on the atmospheric elevation in a nonlinear way, with modest changes from 10 to 20 km elevation and much larger changes for higher elevations.

From these data we will retrieve experimentally the settling velocity of volcanic ash particles at a range of elevations that is of interest for both aviation and climate modelling implications.

Read the full scientific report, with kind permission from Jacopo Taddeucci.


20-EPN-054: Understanding large aeolian ripples on Mars through wind tunnel experiments

20-EPN-054: Understanding large aeolian ripples on Mars through wind tunnel experiments

Visit by Simone Silvestro, INAF Osservatorio Astronomico di Capodimonte (Italy), and Hezi Yizhaq, Midreshet Ben-Gurion (Israel), to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark)
Dates of visit: 04-08 April 2022

Report summary: In our experiments in the Planetary Environment Facility in Aarhus we obtained, for the first time, two superimposed ripple patterns on monodisperse sand beads in CO2 air.

The presence of two distinct sets of aeolian sand ripples in unimodal sand suggests two formational mechanisms. Morphological characteristics such as straight crests and regular spacing point toward an impact mechanism to be responsible for the formation of the smaller (cm-scale) ripples. Conversely, the higher sinuosity of the larger (decimeter) ripples suggest a different type instability (hydrodynamic) at work. We also detect an increase in sizes for the ripples with decreasing pressure which is currently under investigation.

Collectively, our work seem to confirm the hydrodynamic nature hypothesised for the large Martian ripples.

Read the full scientific report, with kind permission from Simone Silvestro.


20-EPN2-051: Evaluation of physical parameters influencing the ice particle transportby wind in a Martian-like environment

20-EPN2-051: Evaluation of physical parameters influencing the ice particle transportby wind in a Martian-like environment

Visit by Clémence Herny, University of Bern (Switzerland) to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark)
Dates of visit: 16-20 May 2022

Report summary: The transport of ice by wind plays a major role in the surface mass balance of polar caps. Ice can be redistributed by wind due to (1) transport of ice particles and/or (2) transport of water vapour associated with sublimation/condensation. On Mars, although the low atmospheric density is less favourable for the transport of particles than on Earth, both dust and sand have been observed to be transported by wind. Despite ice aeolian landforms have been observed at the surface of the North Polar Cap of Mars, ice particle transport has not been directly observed on the Martian surface. Similarly, no laboratory studies of snow/ice particle transport under Martian-like conditions have been attempted thus far due to the complexity of the material.

In this study we propose to perform experiments in the environmental wind tunnel AWTSII at Aahrus University to study the ice particle transport in a wind-flow under Martian-like pressure and temperature conditions. The threshold shear velocity, which is a critical physical parameter for particle transportation, is determined by analysing the images of the samples acquired during the experimental runs as the wind speed was increased. The influence of ice grain sizes, pressure and temperature are investigated. Results will give constraints on the plausibility of wind driven ice particle transport on Mars.


20-EPN2-023: FLUME-ET: Fluidisation of mass flows by metastable volatiles on extra-terrestrial bodies

20-EPN2-023: FLUME-ET: Fluidisation of mass flows by metastable volatiles on extra-terrestrial bodies

Visit by Lonneke Roelofs and Tjalling de Haas, Utrecht University (Netherlands) to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark)
Dates of visit: 03-28 October 2022

Report summary: Martian gullies are alcove-channel-fan systems which have been hypothesised to be formed by the action of liquid water and brines, the effects of sublimating CO2 ice or a combination of these processes. Recent activity and new flow deposits in these systems have shifted the leading hypothesis from water-based flows to CO2-driven flows. This shift in thinking is supported by the low availability of atmospheric water under present Martian conditions and the observation that gully activity occurs at times when CO2 ice is present.

We recently performed novel experiments in the Mars chamber at the Open University in the UK that have shown that this hypothesis holds; sediment can be mobilised and fluidised by sublimating CO2 ice under Martian atmospheric pressure. However, if these experiments work on a larger scale and if these granular-gas flows are able to erode the underlying surface and can explain the formation of Martian gully systems over the long term remained unknown. Therefore, we conducted an additional series of experiments in a larger flume that test the capacity of CO2-driven granular flows under Martian atmospheric conditions to erode sediment.

These experiments were conducted in a 4 m long flume in the Aarhus Mars Simulation Wind Tunnel. Our experiments show that CO2-driven granular flows can erode loose sediment under a range of different slopes and CO2-ice fractions. The results also show that incorporation of warmer sediment increases fluidisation of the mixture, reflected by an increase in gas pore pressure in the flow. These results thus prove that morphological evolution in the gully systems on Mars can be explained by CO2-driven granular flows.


20-EPN-078: Effect of disperse grain size distributions on the aeolian remobilisation of volcanic ash

20-EPN-078: Effect of disperse grain size distributions on the aeolian remobilisation of volcanic ash

Visit by Allen Fries, University of Geneva (Switzerland) to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark)
Dates of visit: 13-17 June 2022

Report summary: Thanks to the collaboration between the University of Geneva and the University of Aarhus through the Europlanet Research program we performed a set of experiments on the remobilisation of volcanic particles. Since removal processes of volcanic particles are relatively poorly characterised, these experiments represent a unique opportunity to study the dynamics of aeolian processes. The obtained results provide valuable information on the threshold friction velocities (i.e. wind friction velocity above which particles start to detach from deposits) of different ash compositions, fundamental for modelling and forecasting remobilisation events.

A total of 32 experiments were performed by using a setup composed of a sample plate (i.e., bed of volcanic ash exposed to gradually increasing wind friction velocities) from which particles were removed by wind and imaged using various techniques simultaneously (i.e. microscopes, and webcam)). These direct observations were combined with multiple particle collection methods to study the characteristics of remobilised particles (i.e. sediment traps and adhesive papers). A complete set of half-phi grainsize classes (from 0 to 500 μm) from 4 volcanoes were analysed. 

Preliminary results show a relation between the threshold friction velocity and the grainsize, in agreement with erosion theories. In addition, these experiments illustrate variations in threshold friction velocities as a function of magma composition: lighter particles (i.e. rhyolite) are easier to remobilise than denser particles (i.e. basalt). These results are pioneering, systematically quantifying threshold friction velocities of volcanic ash for wide grainsize and composition ranges for the first time. 

Read the full scientific report, with kind permission from Allen Fries.


20-EPN-053: Investigation of the electrical properties of volcanic ash

20-EPN-053: Investigation of the electrical properties of volcanic ash

Visit by Eduardo Rossi, University of Geneva (Switzerland) to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark)
Dates of visit: 11-17 June 2022

The set of experiments within the 20-EPN-053 project represents a preliminary step towards the characterisation of the electrical properties of volcanic ash in a collaboration between the University of Geneva and the Aarhus University. This topic is fundamental to better understand aggregates formation in a volcanic eruption and improve model forecasting.

The main setup consists of a horizontal wind tunnel where a recirculating flow allows volcanic ash of different sizes (e.g. from 1 μm to 500 μm, sieved in intervals of half-phi on the Krumbein scale) and compositions (e.g. from basaltic to andesitic) to be resuspended and collide together. Single particles and aggregates are filmed during their motion in the wind tunnel by means of a High Speed Camera (HSC) placed crosswise to the main flow direction. In addition to this, a set of four Optical Particle Counters (OPCs) are located at different heights downwind to the flow (i.e. 5 cm, 10 cm, 25 cm, 50 cm) with the goal of capturing differences in particle population for very fine ash (i.e. <40μm) due to electrostatic phenomena.

The primary goal is to detected particle trajectories that will be later used to quantify the bulk charge carried by single particles by means of an inversion of the equation of motion. The secondary goal is to understand if OPCs can be used combined with the wind tunnel facility to reveal a change in particle population on the recorded histograms that can be associated with aggregation processes due to the electrostatic force.

Read the full scientific report, with kind permission from Eduardo Rossi.


20-EPN-069: Exomars Dust Sensor 22 Characterisation

20-EPN-069: Exomars Dust Sensor 22 Characterisation

Visit by Andrés Russu Berlanga, Carlos III University of Madrid (Spain) to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark)
Dates of visit: 29 November 21 – 3 December

The Dust Sensor (DS’22) is designed to measure the parameters that determine in situ the size distribution of suspended dust on the surface of Mars. The sensor module is composed of an IR source and two IR detectors based on Lead Sulphide (PbS) and Lead Selenide (PbSe) active elements. These materials are defined by the integration of two spectral filters, band 1 operates in the range 1-3 µm (PbS), and Band 2 operates in the range 3-5 µm (PbSe). The Dust Sensor is part of the Radiation and Dust Monitor (RDM), one of the atmospheric devices of the METEO instrument that will be launched on the Exomars’22 mission led by ESA,

The use of the DENMARK – AU Planetary Environmental Facility is a unique opportunity to obtain experimental measurements in a reproduced condition found at the surface of Mars. The tests campaign has been developed for wind speeds of 2, 7, and 13 m/s; DS’22 has been tested in a temperature range between 5 and -55 °C, and three different positions in relation to the wind direction have been tested. The test campaign has approximately 100 independent campaigns where 5 different types of dust have been used, with various particle distributions.

Thanks to all this information, it has been done a characterization of DS’22 and will help to determine the dust distributions that will be observed during the mission.

Read the full scientific report, with kind permission from Andrés Russu Berlanga.


20-EPN2-112: Aeolian saltation at Martian pressures and below

20-EPN2-112: Aeolian saltation at Martian pressures and below

Visit by Philippe Claudin, PMMH – ESPCI – CNRS, Paris (France) to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark)
Dates of visit: 30 May – 3 June 2022

Understanding the conditions required for initiating and sustaining sand motion on Mars is important for determining wind strengths required for mobilizing widespread ripples and dunes. Our previous experimental campaign in the planetary laboratory facility of Aarhus has provided evidence for a lower than expected transport threshold and for the emergence of impact ripples at Martian-like pressures. This time, we have made use of a new grain injector set-up at the entrance of the bed, which allowed us to trigger saltation with grains impacting with the granular surface, and therefore to mimic an effective longer bed. Even with a relatively low injection rate, we were able to reach a saturated sediment flux at the bed outlet, characterised by a neutral bed (no erosion nor deposition), whereas a purely erosive regime is always observed at vanishing injection. We could measure this saturated flux varying wind velocity in Martian conditions and found that transport can be sustained at even lower values than previously reported. With the analysis of the erosion profile along the bed, we shall furthermore be able to extract the saturation length. Finally, we recorded movies of grain motion close to the bed with a high-speed camera, which will allow us to study the properties of grain trajectories in the saturated state.

Read the full scientific report, with kind permission from Philippe Claudin.


20-EPN2-073: Assessment of the Aeolian Dispersion and Wind Effects on Cryptoendolithic Microorganisms in the Martian Environment

20-EPN2-073: Assessment of the Aeolian Dispersion and Wind Effects on Cryptoendolithic Microorganisms in the Martian Environment

Virtual visit by Lorenzo Aureli, University of Tuscia (Italy) to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark).
Dates of visit: 15-19 November 2021

Report Summary: The hostile current conditions on the surface of Mars entail that, if any form of life exists or ever existed on the planet, it may have adopted survival strategies like those evolved by terrestrial microorganisms inhabiting extremely harsh regions, such as Antarctic deserts. Here, one of the most common strategies observed is the cryptoendolithic growth, defined as the colonisation of the small interstices inside rocks, where microorganisms are protected from external hostile conditions. However, endolithic microorganisms can break down the surrounding rock substratum, thus causing the exfoliation of the external layers of the colonised rocks. Consequently, exposure to wind and saltating sand can cause the dispersal of the shallow rock fragments and endolithic colonies to the environment.

This study aimed to examine the possibility of dispersal of hypothetical rock-dwelling microorganisms on the surface of Mars. To achieve this goal, colonised Antarctic sandstone rocks were exposed to simulated martian and terrestrial windy environments at the Planetary Environment Facility in Aarhus University in four different simulations. Rock, sand and dust samples were collected after each simulation to assess the survival and the variety of dispersed microorganisms in the two scenarios. Although biological data are not available at the moment of the draft of the report, remarkable differences were observed in the dispersal of dust and sand between the different conditions.

Read the full scientific report, with kind permission by Lorenzo Aureli.


20-EPN-078: Abrasion test to understand aeolian grain surface evolution on Mars versus Earth – suggestions for ExoMars rover mission

20-EPN-078: Abrasion test to understand aeolian grain surface evolution on Mars versus Earth – suggestions for ExoMars rover mission

Virtual visit by Zsuzsanna Kapui, Eötvös Lorand University ̷ Research Centre for Astronomy and Earth Sciences (Hungary) to TA2.4 Planetary Environment Facilities (PEF), AU (Denmark).
Dates of visit: 2-6 August 2021

Surface microtextures on quartz grains provide good information of the transport medium (ice, river, wind) on Earth, as shape and surface micromorphological features strongly depend on them. A well-developed system has been already used for the quartz grains, but similar detailed studies of basaltic grains have not been conducted before, although this could be relevant for Mars. We aim to develop such a system for olivine grains (main basalt forming mineral). Between 2-6 August 2021, a quartz and an olivine sand grain group (both sized 1 – 2 millimetre) were analysed by wind transport at the AWTSII Wind tunnel facility in Aarhus, Denmark.

A special, self-built box (wind tunnel section with a relatively small cross section) was designed and produced in Hungary to allow periodic transport of the sand grains from one end to the other by a motor driven rotation system. The test started with difficulty because the sands movement did not start, a combination of factors meant that even at the highest fan rotation rate of the AWTSII facility active sand transport was not achieved. Finally, the solution became that the sand holder box in the wind tunnel was also tilted by 24 degrees. The quartz and olivine sands were transported by a mixture of gravitational avalanching and wind driven transport at around 1 bar pressure. Altogether two tests were performed during around four hours to see the attrition process related to grain shapes and surface microstructures. Microscope and webcam videos as well as wind flow data (pitot tube) were collected.

Currently, microscopic analysis with Morphology instrument is underway on the returned particles. The obtained results will be included in an article in progress and in my doctoral dissertation.