EPSC2024: Final Media Invitation and Details of Media Briefings
Hera – One Month Before Launch; Updates on BepiColombo Flybys
The 2024 Europlanet Science Congress (EPSC2024) is taking place this week in hybrid format at the Henry Ford Building of the Freie Universität Berlin, Germany, and online.
EPSC2024 covers the full spectrum of planetary research and technology across more than 60 scientific sessions. More than 1200 oral and poster presentations have been submitted and around 1200 planetary scientists from Europe and around the world are attending the conference. Media representatives are cordially invited to attend EPSC2024. Media registration is free. Any bona fide media delegates can register by e-mailing aheward@europlanet-society.org.
Press Briefing, Friday, 13 September 2024
A press briefing will be held on Friday, 13 September at the Henry Ford Building of the Freie Universität Berlin and online. The briefing will cover two topics, with the following programme:
12:05 CEST: ESA Hera Mission: One Month Before Launch In just under one month, ESA’s Hera mission will set off to make a detailed post-impact survey of the asteroid moonlet Dimorphos, which was impacted by NASA’s DART mission on 26 September 2022. Representatives of the Hera team will discuss expectations, current status and future plans for the mission, and summarise results from data extracted from DART to date. Speakers:
Michael Küppers, ESA Hera Project Scientist, European Space Astronomy Centre (ESAC), Spain
Patrick Michel, Hera Mission Principal Investigator, DART Investigation Team, Observatoire de la Côte d’Azur, France.
12:30 CEST: Updates on BepiColombo Flybys Following the flyby of Mercury by the joint ESA/JAXA BepiColombo mission on 4 September 2024, members of the mission and science team will present an update on the latest rendezvous, as well as results from previous flybys. Speakers:
Johannes Benkhoff and Geraint Jones, ESA BepiColombo Project Scientists, ESA-ESTEC, Netherlands
Note: Additional speakers may join. The final line up will be published here.
To attend press briefings in-person, please make sure that you have received a TAN code waiver and registered as media for EPSC2024 by emailing aheward@europlanet-society.org. To attend online, please follow the Zoom registration links below and you will receive a confirmation email containing information about joining the live stream.
The Europlanet Science Congress (https://www.epsc2024.eu/), established in 2006 as the European Planetary Science Congress, is the largest planetary science meeting in Europe and regularly attracts around 1200 participants. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.
Follow on Twitter via @europlanetmedia and using the hashtag #EPSC2024.
About Europlanet
Europlanet (www.europlanet-society.org) is a not-for-profit association and membership organisation that provides the planetary science community with access to research infrastructure, services and training. The Europlanet Association Sans But Lucratif (AISBL), established in 2023, builds on the heritage of a series of projects funded by the European Commission between 2005 and 2024 to support the planetary science community in Europe and around the world.
Europlanet received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement numbers 871149 (Europlanet 2024 Research Infrastructure) and 654208 (Europlanet 2020 RI), FP7 under grant agreement number 228319 (Europlanet RI) and FP6 under grant agreement number RICA-CT-2004-001637 (European Planetology Network).
On behalf of Europlanet, welcomes to Berlin for the Europlanet Science Congress (EPSC) 2024! With 1075 in-person participants and 66 virtual registrations so far – we are looking forward to probably our largest stand-alone meeting to date.
We start proceedings at 16:30 this afternoon with the Icebreaker Reception, followed by the Diversity Keynote. Tomorrow, scientific sessions begin at 08:30 and the Opening Ceremony at 16:15.
Many thanks to all the Local Organising Committee, the Scientific Organising Committee, the Conveners, the EPSC Committee, the EPEC Early Career Network, the Europlanet Society Board, Committees and Working Groups and, especially, the team at Copernicus, who have put such an exciting week together.
If you want to find out more about Europlanet, the organisation behind EPSC, come by our stand in the exhibition.
Get creative with Europlanet’s #InspiredByOtherWorlds arts contest 2024
**Deadline Extended**
(Update from original post on 11 March 2024)
The Europlanet Science Congress (EPSC) 2024 is inviting schools and space enthusiasts of all ages to get creative and share their artworks and performances inspired by other worlds in a contest called#InspiredByOtherWorlds.
The theme this year is ‘Returning to Earth’.
About the contest
With missions like OSIRIS-REx and Hayabusa2 in the headlines, this year’s contest looks at ideas around returning to Earth samples and clues on the origin of our Solar system and life!
Art is meant to inspire. Art is meant to be shared. Art allows us to go beyond our limits. Planetary science takes us beyond the limits of our world. What happens when a passion for art and a passion for exploring planets and other worlds meet? Let your imagination take us on a voyage through our Solar System and back to Earth! Show us how you have been inspired to create drawings, storytelling, pictures, videos, stop-motion animations, models, craft works or art installations at home.
The deadline for the competition has been extended to 30 September 2024.
Entries for #InspiredByOtherWorldswill be showcased during EPSC2024 in Berlin.
All artworks submitted will be judged by a panel of planetary scientists and artists. The winning artworks or performances will be shared via the Europlanet website, newsletters and social media and will be used to inspire young people in future Europlanet outreach activities.
So get creating!
Rules
For all the information about the contest, see the #InspiredByOtherWorlds FAQ page. If you’d also like to share on social media please use the hashtags #InspiredByOtherWorlds#EPSC2024.
Questions
If you have any questions, please contact stavro.ivanovski@inaf.it .
Acknowledgements
The #InspiredByOtherWorlds arts contest 2024 is supported by the Europlanet Society, the Europlanet Science Congress (EPSC) and Lecturers Without Borders.
Planetary Perspectives: Meet the New Europlanet Society Board
This edition of Planetary Perspectives highlights opportunities within space industry for early careers in an interview with Yoga Barrathwaj Raman Mohan (Blue Skies Space Ltd/Europlanet Industry Team).
Europlanet Telescope Network: Small-Scale Facilities Lead to Large-Scale Successes
As the Europlanet Telescope Network celebrates its fourth birthday, Gražina Tautvaišienė (Vilnius University, Lithuania), Guenter Kargl (Austrian Academy of Sciences, Austria) and Anita Heward (University of Kent, UK) reflect on the achievements to date.
Engaging With Embassies
Nigel Mason (Coordinator of Europlanet 2024 RI) gives guidance on how to approach embassies and an example of the outcome of a collaboration between embassies in the UK and Hungary.
Little Venus in the Middle of the Atlantic
Uli Köhler (DLR, Germany) reports on an expedition to Iceland that is helping to prepare for NASA and ESA missions to Venus at the beginning of the next decade.
The Future of Sample Return
Peter McArdle, Hans Huybrighs, J D Prasanna Deshapriya and Ottaviano Rüsch of the Europlanet Early Careers (EPEC) Future Research Working Group interview Enrica Bonato, who developed the sample return lab at at the German Aerospace Center (DLR) in Berlin.
SPIDER: Supporting Space Weather Studies Through the Solar System
Nicolas André (Institut de Recherche en Astrophysique et Planétologie, France) and Andrea Opitz (HUN-REN Wigner Research Centre for Physics, Hungary) describe how Europlanet’s SPIDER services are supporting planetary space weather studies and Solar System missions.
Beautiful But Not Hospitable – A Sensory Tour of the Solar System’s Planets
Anita Heward (Europlanet/University of Kent, UK) and Thibaut Roger (University of Bern, Switzerland) report on reactions to an unusual scent at the Swiss Comic Con.
Workshops for Global Collaboration
Barbara Cavalazzi (University of Bologna, Italy) reviews a series of workshops organised by Europlanet in Africa and South America.
Stories of Planetary Mapping
Riccardo Pozzobon and Matteo Massironi (University of Padova, Italy) explains how Europlanet’s GMAP activity has created infrastructure to support geological mappers around the world.
Commkit – Should You Augment or Virtualise Your Reality?
Thibaut Roger (University of Bern/NCCR PlanetS, Switzerland) examines how to incorporate VR and AR in your outreach and communication.
The Last Word – Europlanet Beyond 2024
Ann Carine Vandaele, President of the Europlanet Society, and Nigel Mason, Coordinator of the Europlanet 2024 Research Infrastructure (RI) reveal a new phase for Europlanet.
The Europlanet Science Congress (EPSC) 2024 will take place at the the Henry Ford Building, Freie Universität Berlin, Germany, & online from 8-13 September. Europlanet, the EPSC Executive Committee, EPEC and the Regional Hubs are all looking forward to meeting people there.
Beyond the science programme, here is a heads-up of some of the community events that will be taking place during the week:
Have you ever overheard a comment that you knew was not right but did not know what to say? Are you ever the one who feels the need to “laugh” at a “joke” that is more harmful than funny? Do you ever find yourself heading home after work thinking, “I should have said…”? Would you like to have some specific skills designed to help interrupt break-room gossip?
This Bystander Intervention workshop is an in-person, interactive workshop that is designed to engage participants in conversation about difficult topics including, but not limited to, racial-, sexual-, religion-, age-, gender-, and sexuality-based harassment, bullying, and exclusion.
When: Sunday, 8 September 2024, 13:00–17:00
Where: Room Mercury – Konferenzraum III
Who: Organised by the Europlanet Diversity Committee, the workshop trainer is @Moses Milazzo.
How to attend: This workshop has a capacity of 27 participants, if you wish to attend, please sign up here.
Diversity Keynote talk – Don’t shoot for the stars: shoot higher! by Iris van Zelst
Join us after the Icebreaker for this year’s EPSC Diversity Keynote talk. Iris van Zelst (DLR, Patience Cowie Research Fellow at the University of Edinburgh starting in 2025) will show some preliminary results of analysis into the participants of the Ada Lovelace workshop — a biannual workshop for geodynamical modellers — to demonstrate the evolving diversity of the geodynamics community specifically. She will also discuss different initiatives to pursue both as an individual and as a community to make sure we continue to diversify our community and provide a welcoming space for everyone.
“SmallSat vs Large-scale Missions: Exploring Opportunities across the Europlanet Community”
To foster interactions, connections and potential collaborations among diverse Europlanet communities — including academics, industry professionals, policymakers, and communicators at all career levels — E-SPIN is a new thematic event at the 2024 Europlanet Science Congress (EPSC) in Berlin. The event will focus on ‘innovation’ in planetary sciences, serving as a common thread across all these communities.
When: Tuesday, 10th September 2024, from 19:00 to 21:30 CEST (19:00 – 20:30 CEST for online participants)
Where: Room Sun (Auditorium), Henry-Ford Building, Freie Universität, Berlin, and online
Who: Open to all EPSC registrants (in-person and online), free of charge
What: Moderated Panel Discussion on this year’s theme “SmallSat vs Large- scale missions: Exploring opportunities across the Europlanet community”, with in- person and online audience participation, followed by a networking reception (in- person only). To secure your place, please register your interest.
More information
The objectives of this year’s thematic debate are as follows:
Analyse the potential challenges and benefits of integrating NewSpace approaches into traditional planetary science frameworks;
Facilitate the exchange of ideas on how different stakeholders (including early career professionals) can contribute to and benefit from the evolving landscape of space exploration and technology;
Discuss the role of Space Agencies and SMEs in the European NewSpace strategy;
Explore how academia and industry can collaborate innovatively on future missions;
Examine how novel forms of communication can effectively raise public awareness of planetary science.
The invited panelists (in alphabetic order) will offer unique perspectives and insights to foster an engaging discussion and encourage the development of cross- community interactions:
Dr Noel C. Baker, Project Manager of ALTIUS SmallSat, Brussels (Belgium), Member of EGU’s Science for Policy working group, representing the academic/policy/communication communities;
Tobias Bohnhardt, Head of the DLR School Lab, Berlin (Germany), representing the communication/outreach communities;
Prof. Nigel J. Mason, University of Kent (UK), Co-I of MAUVE cubesat, representing the academic community;
Irene Selvanathan, founder and CEO of Neurospace, Berlin (Germany), involved in the TACHELES satellite on Artemis 2, representing the industry community;
Dr Yannis Zouganelis, ESA Solar System Science Coordinator, deputy PI of the Solar Orbiter mission, representing the space agency/policy communities.
Location: All Early Career Events take place in room Saturn* in the Henry Ford Building, Freie Universität Berlin, Germany
Find all links to connect with us before, during, and after the conference here: https://qrco.de/bdJX7p
Europlanet Early Career General Assembly
Time: Monday, 13:30 – 14:20
The EPEC network is the official entity representing early careers within the Europlanet Society. Early Careers from all over the world are encouraged to participate in the EPEC assembly organized during EPSC to unite, get to know the network and your peers. At this assembly, there will be an introduction to how EPEC is organized, an update on the past year’s activities, an overview of all early career related events at the conference and the latest news. Come meet the team and ask your questions! By joining our community, you will get opportunities to be involved in a variety of activities in a friendly, welcoming, and inclusive environment.
Science Flash
Time: Tuesday, 18:15-19:00
Science Flash returns to this year’s EPSC and we are excited to see what the contestants come up with this time! During the Science Flash, early-career scientists have three-minutes to convey their work in an unconventional, engaging way. Top tip: Less is more! Each presenter may use up to one prop and up to three figures – but no text allowed! For inspiration: The last winner used an image of a fizzy drink whereas the runner-up made great use of an onion.
All are welcome to come and enjoy the presentations. But why not give it a shot? This year’s main prize is a free registration to next year’s EPSC! But fear not, there are also three “one-of-a-kind” Science Flash 2024 mugs for the top three presentations. If you want to register as a contestant, send an email with your name, institution and a three-image only (no text) pdf to noah.jaeggi@virginia.edu (Deadline: Midday on Tuesday September 9).
Panel Discussion on Career Development
Time: Thursday 13:00-14:20
How can we shape our career in planetary sciences and face the current challenges in academia and beyond? How can different paths lead to landing a successful and fulfilling role? The Europlanet Early Careers have gathered four accomplished members of the Europlanet Community to talk about their experiences, each carving a distinct path through science that has led them to where they are today.
Join us for a lively discussion with our four panel members and learn from the different experiences of our community. With this discussion, we hope to inspire you on how to pursue the path that best suits you and leads us to our best scientific and personal development.
EPEC Social Event
Time: Thursday 19:30-23:00
Come and join us for the early career social event at Alter Krug, Dahlem. The social event is a great opportunity to meet up with your fellow early career researchers and students, and expand your network. The door of this cozy biergarten opens at 19:30 with drinks (alcoholic/non-alcoholic) and snacks (vegan/vegetarian options available) that can be purchased at the bar. No registration is required, just come and have a great time!
*The social event will take place at Alter Krug, Königin-Luise-Straße 52, 14195 Berlin. It is approximately 20 mins/1.5 km of walking distance from Henry-Ford building (our venue for EPSC).
Europlanet Events
General Assembly
Tue, 10 Sep, 12:15–13:15 (CEST) | Room Sun (Auditorium)
The Europlanet General Assembly is the annual forum for Europlanet Society members (and non members) to learn about the activities of the Europlanet Society which also runs EPSC and was integral to the Europlanet 2024 Research Infrastructure. To learn about our activities, plans for the future and how you can get involved in the Society’s activities please come along to the General Assembly. A limited number of lunch bags will be provided to General Assembly attendees during the assembly.
Agenda:
Approval of this year’s agenda
Approval of 2024 balance sheet and budget for 2025
Approval of Europlanet’s Sustainability Plan for organisational membership
Approval of changes to the Europlanet AISBL statutes
Appointment of the new Vice-President to the Europlanet Society Executive Board
Discussion of future activities
Date of next General Assembly
AOB
Planets in Your Hand
The Planets in Your Hand exhibition will be displayed on the Level 1 – Intermezzo of the EPSC2024 conference venue.
The Planets In Your Hand exhibition offers visitors the opportunity to see, learn and touch the special features of each planetary surface in our Solar System. At the same time, it contributes to the dissemination of the scientific knowledge we currently possess about planetary exploration to schools and the public, with a special focus on visually impaired people.
The Planets In Your Hand team is one of the most active science communication groups in the Department of Physics at the National and Kapodistrian University of Athens. The program and the team were founded in 2017 under the “Europlanet Funding Scheme 2017” organized by Europlanet, the European network of planetary science. Our proposal was evaluated, distinguished among many others and awarded, receiving funding for its implementation.
Planets In Your Hand program aims to highlight the different conditions that prevail in our Solar System. This has been done by building specially designed exhibits, where the surface and characteristics of each planet are simulated.
In the context of the proposal’s implementation, a website and social media channels (facebook, instagram) have been created
EPSC2024: Media Invitation to the Europlanet Science Congress (EPSC) 2024, 8-13 September 2024
The 2024 Europlanet Science Congress (EPSC2024) will take place at the Henry Ford Building of the Freie Universität Berlin, Germany, from 8–13 September 2024.
EPSC2024 covers the full spectrum of planetary research and technology across more than 60 scientific sessions, with topics including current and upcoming missions, the use of drones, AI and Machine Learning in planetary science, planetary defence and sample return. The programme is supplemented by keynotes, debates and community events. More than 1200 oral and poster presentations have been submitted and around 1200 planetary scientists from Europe and around the world are expected to attend the conference.
EPSC2024 will take place as a fully hybrid meeting, with the possibility of live virtual participation in all standard scientific sessions.
Press briefings will be livestreamed and press notices on presentations of interest to the media will be issued by the EPSC2024 Press Office during the meeting. Details of press briefings and livestream access will be circulated closer to the time.
Details of the scientific sessions and the presentation abstracts can be found at the official website: https://www.epsc2024.eu/
Media representatives are cordially invited to attend the EPSC2024 meeting. Media registration is free. Any bona fide media delegates can register by e-mailing aheward@europlanet-society.org.
The Europlanet Science Congress (https://www.epsc2024.eu/), established in 2006 as the European Planetary Science Congress, is the largest planetary science meeting in Europe and regularly attracts around 1200 participants. It covers the entire range of planetary sciences with an extensive mix of talks, workshops and poster sessions, as well as providing a unique space for networking and exchanges of experiences.
Follow on X/Twitter via @europlanetmedia and using the hashtag #EPSC2024.
About Europlanet
Europlanet (www.europlanet-society.org) is a not-for-profit association that provides the planetary science community with access to research infrastructure and services. The Europlanet Association Sans But Lucratif (AISBL), established in 2023, builds on the heritage of a series of projects funded by the European Commission between 2005 and 2024 to support the planetary science community in Europe and around the world. Today, Europlanet is an independent membership organisation that provides mobility programmes, community services and training.
Europlanet received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement numbers 871149 (Europlanet 2024 Research Infrastructure) and 654208 (Europlanet 2020 RI), FP7 under grant agreement number 228319 (Europlanet RI) and FP6 under grant agreement number RICA-CT-2004-001637 (European Planetology Network).
The future competitiveness of the European Research Area in science and technology is predicated upon the ERA having a Research Infrastructure (RI) based on facilities and people. Modern science and technology require access to state-of-the-art facilities, both large (e.g. synchrotrons, accelerators) and medium/small (e.g. suites of analytical tools). These may be based in custom-built sites, on the premises of universities, or at national institutes. Facilities are not restricted to laboratories but also embrace field-sites, computational and data bases/archives with both on-site or virtual access.
Europe has built up a complex, multidisciplinary set of RIs that support a myriad of science and technology embracing all fields, such that European Researchers and European industry are able to act at the forefront of modern research with examples including AI and machine learning, astronomy, climate change, nanotechnology, next-generation health care and quantum computing. Uniquely, the majority of these facilities are open to all European researchers at no cost to the user. Hence, we have been able to exploit the full intellectual capacity of ERA home to over 2 million researchers.
RIs may be single site in Europe or internationally (e.g. CERN or European Southern Observatory (ESO)), or ‘Distributed’ across many sites and nation states e.g. European Synchrotron network. However, such a RI has grown largely organically with access funding often relying upon direct Funding from the EC Framework programmes. Future funding and models for the sustaining of ERA RIs are now in question and alternative structural and funding models for the ERA RI network are being developed ranging from the 29 European Research Infrastructure Consortia (ERICs) often led by governmental organisations to growing numbers of Associations internationale sans but lucrative (AISBLs) commonly organised and led by the community of academics and institutions. One size and structure does not fit all, and the operability and sustainability of ERA RIs are and will be necessarily varied. However, discussions between different RIs to share operational models and examples of good practice are required.
This one-day meeting is arranged to directly follow the European Strategy Forum on Research Infrastructures (ESFRI) meeting held in Szeged, Hungary, 16-17 September 2024. The meeting is open to all ERA RIs and builds upon the recently published ESFRI landscape analysis of ERA RIs. The meeting is focused upon two specific topics:
12.00 Lunch (joined by delegates from ESFRI meeting)
13.00 Opening
13.15 Session 1 Keynotes
The ERIC landscape
The AISBL Landscape
Distributed RIs – Definition and practice
RI Sustainability models and practice.
14.30 Session 1 Panel and Open Forum
15:30 Coffee Break
16.00 Keynotes
EU RI landscape – Geographical Distribution
CERIC – An initiative to for distributed infrastructure in physics
In-kind potential to large scale infrastructures – possibilities and limitations
Training and retaining RI staff.
17.15 Panel and Open Forum.
Session 1. Models of ERA RIs and their Sustainability
The EU research infrastructure community remains poorly connected and acts in many disparate ways. It is thus often hard for agencies and governmental organisations to understand and navigate the EU RI landscape. In this session we will review the different types of ERA RIs, their structure (and the advantages and disadvantages of each). We will aim to characterize some of the terms widely used (but with different definitions in different communities) such as ‘Distributed Research Infrastructures’, discuss how ERA RIs may work more closely together to optimise their functionality (many facilities are in more than one RI with each RI operating different management and access provisions) and increase their visibility and impact to disparate user communities (including industry). Different models for long-term sustainability of RIs will be discussed and debated. Finally, the provision for cooperation and information exchange between ERA RIs will be discussed with the option of hosting biannual meetings
Session 2. 2. Widening Participation in ERA RIs
The vast majority of ERA RIs draw upon facilities based in a limited number of countries. To date, there are fewer facilities and thus less institutional membership of RIs from the nation-states in Central, Eastern and South Eastern Europe. In this session we aim to review this landscape and explore both the potential and the challenges for facilities and RIs in these regions. This discussion is topical for both the Hungarian Presidency (2024) and Polish Presidency (2025).The discussion aims to identify those initiatives that are present in the region that help the connection of the EU-15 and EU-13 countries’ researchers through the domestic research infrastructures. These infrastructures are playing a pivotal role in enabling researchers to use the scale-up facilities that are present mostly in the EU-15 (with the exception of the one ELI ERIC). Also, the national infrastructures are nodes of many distributed research infrastructures, and as such they can contribute to economic development as well either through their own development or through in-kind contributions to the large-scale research infrastructures.
The Ireland-UK Hub Committee met in person at the British Planetary Science Congress (BPSC) in June 2024. The mission statement for the Hub, the committee composition and the recruitment of positions to be filled were discussed. The hub is particularly searching for more Irish representatives to join the committee.
BPSC 2024 took place at Space Park Leicester (SPL) and the adjacent National Space Centre in Leicester between 18-21 June. The event started with a 1-day workshop for early careers, during which experienced SPL engineers and project managers presented examples of how space instruments and missions are developed. The main 3-day conference consisted of oral and poster sessions, reflecting the range of topical planetary and space science activities in the UK. Europlanet sponsored the event through the Ireland-UK Hub. The Europlanet Management Team from the University of Kent attended with a stand and participated in the community consultation day.
Get to know some of the members of the Ireland-UK Hub Committee through their profiles:
Steve Miller – Interim Chair and Royal Astronomical Society Liaison, University College London
Steve Miller
Steve Miller is Emeritus Professor of Science Communication and Planetary Science at University College London, and Chair of the Royal Astronomical Society’s outreach and engagement programme RAS200: Sky & Earth. His planetary science interests lie in understanding how giant planets – like Jupiter and Saturn, and some of the hot, giant exoplanets – couple with their space environment. A former political journalist, Steve is interested in wider science and society issues. He is (co-)author of Science in Public: communication, culture and credibility (1998) and The Chemical Cosmos: a guided tour (2011). Steve is a Founder Member of Europlanet and the Europlanet Society.
Peter Fawdon – UK Planetary Forum Liaison, Open University
Peter is a research fellow at the Open University. In his research is he uses geological remote sensing to understand the geological history of early Mars. Focusing on geographic contexts of where heat (volcanoes) and water (rivers, lakes and ice) have interacted. This is part of his broad interest in the context of life outside Earth; understanding where the places are in which life could have lived. He is an involved member of the ExoMars mission, as part of the Science operations working group leading the geological mapping of the landing site, as and as part of the PanCam and CaSSIS camera teams.
Peter became involved in Europlanet through his organisation of BPSC2022 and his desire to expand the UK Planetary Forum to better serve the needs of the flourishing planetary research community across the British Isles.
Chrysa Avdellidou – Vice Chair, University of Leicester
Chrysa Avdellidou
I am a Lecturer in Planetary Science (University of Leicester), studying asteroids, moons and impacts in our solar system with experiments and observations. I am a collaborator at the ORISIS-REx, an ESA participating scientist at the Martian Moon eXploration, and I participate in the LUnar Meteoroid Impact Observer cubesat team. I hold a Physics Degree from the Aristotle University of Thessaloniki and a PhD in Physics from the University of Kent. I was a fellow at ESA/ESTEC and at the Observatory of Nice. I am a council member of the Royal Astronomical Society. My aim is to promote planetary science via the UK/Ireland node.
Jack Wright – Secretary, ESAC European Space Agency, Madrid
Jack Wright
Originally from Belfast, Jack Wright is a European Space Agency Research Fellow based at the European Space Astronomy Centre outside Madrid, Spain. He completed his PhD in planetary geology at the Open University (UK) in 2019, during which he made the first geological map of Mercury’s Hokusai quadrangle. He stayed at the Open University for two postdoctoral positions where he produced advanced planetary maps, including machine-learning-derived terrain maps of Martian rover landing sites. At ESA, he continues to use geological mapping to address big questions about Mercury, including the subsurface distribution of the planet’s enigmatic volatiles. Jack is looking forward to strengthening ties between planetary science researchers in Ireland and the UK as Secretary of the Europlanet Ireland & UK Regional Hub.
Lewis Dartnell – Outreach Officer, University of Westminster
Lewis Dartnell
I graduated from Oxford University with a degree in Biological Sciences and completed my PhD at University College London in 2007. I now hold the Professorship in Science Communication at the University of Westminster. My research is in the field of astrobiology and the search for microbial life on Mars, focusing on the cosmic radiation bombarding the martian surface. I am also very active in science communication and outreach. I deliver live events at schools and science festivals, work as a scientific consultant for the media, and have published five books, including one on astrobiology: ‘Life in the Universe: A Beginner’s Guide’. www.lewisdartnell.com
Planetary science research interests: Astrobiology, Mars, Cosmic Radiation, Extremophiles, Biosignatures
Connor Hoad – EPEC Representative, Royal Holloway, University of London
Connor Hoad
I am a PhD student at Royal Holloway University of London, specialising in the remote sensing of Venus’s exotic surface terrains using Synthetic Aperture Radar (SAR) imagery. Scientific interests outside of my PhD include the employment of machine learning techniques for planetary surface exploration, and SAR investigation of the lunar regolith. My involvement in Europlanet is centred around facilitating the engagement of Irish and British early career researchers with the broader European Planetary Sciences community.
Callum Piper – Europlanet Liaison
Callum joined Europlanet in 2021, working with the management team of the Europlanet 2024 Research Infrastructure to deliver access and networking activities to the planetary science community. Coming from a background in humanities, Callum coordinates community-building activities like the Europlanet Society Webinar Series and is heavily involved with Europlanet’s sustainability plans beyond the end of the Europlanet 2024 RI project.
Other Ireland-UK Hub Participants
Frances Butcher, University of Sheffield
Frances Butcher is a Leverhulme Early Career Research Fellow at the University of Sheffield. She researches glacial processes on Mars and Earth. She aims to understand the role of ice and ice-related processes in the evolution of Mars’ surface and climate, and also works on reconstructing Earth’s Quaternary ice sheets. Frances is committed to supporting the planetary science community and looks forward to facilitating interactions between the Irish, British and wider European planetary science communities.
Caitriona Jackman, Dunsink Observatory, Dublin
Prof Caitriona Jackman leads the Planetary Magnetospheres group and the Dublin Institute for Advanced Studies. Her research interests include magnetic reconnection, large-scale magnetospheric dynamics, remote sensing of radio, UV, X-ray emissions. She is very keen on communicating science to the general public, and led the development of Ireland’s first space-themed escape room at the DIAS Dunsink Observatory.
The annual Conference on Variable Star Research is the most important meeting organized by Variable Stars and Exoplanet Section of the Czech Astronomical Society (VSES CAS). In 2024, the Pro-Am Meeting on Variable Star/56th Conference on Variable Star Research is organized as a follow-up event for the International conference/Binary and Multiple Stars in the Era of Sky Surveys in the Castle Hill in Litomyšl.
International participants can apply for a refund of their travel costs (transport and accommodation) kindly provided by the Europlanet Society Central Europe Hub. The granting of funding will be decided by the SOC committee. Please send a brief cover letter and abstract to sphecas@gmail.com.
The Pro-Am meeting on Variable Star creates ties between professionals, students and amateur astronomers in the field of variable stars and exoplanet research. Overview lectures by professionals, current research results and methods by astrophysics students and observation results by amateur astronomers are presented every year. Observation techniques, equipment, software tools and online resources are also discussed.
This year meeting will assume hybrid form – both in person and online (via Zoom), and will be held in Czech and English languages. There will be student section for high school and university students presenting their work. The student section will be organised as a contest where the best presenter will be recognised and receive a prize donated by the VSES CAS.
Contributions from the conference can be published in Open European Journal on Variable Stars, an electronic open peer-reviewed journal issued by VSES CAS in cooperation with Masaryk University Brno, with indexation in SIMBAD database and Smithsonian/NASA’s ADS. Recordings of the talks will be made public on VSES CAS YouTube channel and presentation files will be accessible in meeting programme.
The Ariel Data Challenge 2024 is calling all data scientists, astronomers, and AI enthusiasts to help tackle one of astronomy’s most complex and important data analysis problems—extracting faint exoplanetary signals from noisy space telescope observations.
The NeurIPS 2024, a world-renowned machine learning conference, will feature an exciting competition based on the Ariel Space Mission. This contest offers participants a unique chance to contribute to cutting-edge research in the fascinating field of exoplanet atmospheres. With a substantial prize pool of $50,000 USD at stake, the competition aims to attract top talent and innovative solutions.
As the Europlanet 2024 Research Infrastructure (RI) comes to an end, the Project Coordinator Prof Nigel Mason reflects on the highlights, achievements and outcomes of the last 4.5 years, and looks forward to the next steps for Europlanet.
Dear Friends and Colleagues,
31st July marked the end of the Europlanet 2024 Research Infrastructure (RI) and, with it, the completion of a series of EC-funded projects over the course of some twenty years. Europlanet 2024 RI was built upon a rich heritage of Transnational Access programmes, Virtual Access services (most notably the VESPA and SPIDER platforms) and networking activities, but has advanced the field and community still further with:
The initiation of the Europlanet Telescope Network.
The inclusion of geological mapping and machine learning tools and services.
Extended international collaborations with partners in Africa, South America and Korea.
Strategic investment in upgrades to facilities to better-simulate and understand diverse and extreme planetary environments.
During Europlanet 2024 RI, we have provided services that have allowed the European planetary science community to continue to lead the world in pioneering research. We have supported over 300 researchers in their visits and research while providing access to a vast array of databases and tools for planetary and space science research through our Virtual Access programmes. We have been integral to more than 230 publications, and there are many more to come!
I contend that today it is almost impossible to view European planetary science without the presence of Europlanet. The annual Europlanet Science Congress (EPSC) regularly attracts over 1200 delegates and has grown to become the recognised European meeting point of the planetary community. The Europlanet Early Career (EPEC) network supports the next generation of researchers, who will become the PIs of future missions! Europlanet is referenced in the strategic landscape analysis for European research infrastructures.
Throughout Europlanet 2024 RI, we have been planning for the sustainability of the Europlanet portfolio to ensure that twenty years of research and community work will continue into its third decade. I am therefore delighted to announce that, although Europlanet 2024 RI ends today, Europlanet is ready to continue its work and ambition.
Last year, we set up a not-for-profit association (Europlanet AISBL) that means we now have the legal structure in place to operate sustainably. In September 2024, we will be launching a new membership programme for organisations, in addition to the individual membership programmes we have been running since 2018. This new funding model will enable us to carry on our core activities, including:
Mobility programmes, with access to facilities, telescopes and expert exchanges.
Training and mentoring of early career planetary scientists and the wider community, including the Planetary Mapping Winter School.
Support for the community at a grass-roots level through travel bursaries, prizes and small grants.
Sustaining and growing our community through EPSC, strategic partnerships and other activities in all regions of Europe and internationally.
Ensuring the voice of the planetary science community is heard in important strategic fora in Europe and internationally.
An exciting aspect of moving beyond the EC-funded project is that we are not limited to a fixed set of beneficiaries. Henceforth, Europlanet is open to everyone, so any laboratory or research group working in the field will be able to join. With over 200 planetary-related organisations in Europe alone, that is already a sizeable pool of potential members — for a fee that is typically less than one open-access publication charge!
When organisational membership opens at EPSC, I would suggest that each of you ask your institution to join for at least one-year with a small amount from your project overheads to ensure that you are able to ensure your own legacy of Europlanet 2024 RI post-project. And, of course, we encourage you all to join as individual members. It is a small amount to support Europlanet, which is your community, designed and created through all your efforts.
A summary of our plans for Europlanet Beyond 2024 is online now, and further details will be circulated over the summer for discussion at EPSC and our final Council meeting. In the meantime, I wish to end with many thank yous:
Thank you to the Europlanet 2024 RI Consortium for the constant camaraderie and team spirit – we worked through the Covid-19 pandemic, and all the subsequent issues and changes we had to make, to deliver everything we had promised despite the challenges.
Thank you for the enthusiasm and dedication with which everyone addressed all the Europlanet 2024 RI tasks.
Thank you for delivering a truly extraordinary set of scientific and technical results that have ensured our community is at the forefront of one of the greatest endeavours of humanity – exploring our Solar System and beyond.
While everyone involved has played an essential part in Europlanet 2024 RI’s success I would like to express particular thanks to the Europlanet Office team:
Susmita Datta, without whom we would never have been able to run this project and secure Europlanet’s future. Her efforts for all of us were (and are) remarkable, not least in engaging with the Commission so tirelessly and ensuring all their staff were supportive of our many requests. She will be chasing us for those final reports to be presented at the final Council meeting in Berlin.
Anita Heward, who has lived Europlanet almost since its inception in 2004 and through whom so much of the recognition of Europlanet beyond our own community has been achieved. Europlanet 2024 RI is just one part of her ‘lifetime work’ for Europlanet community.
Alicia Barron, Zofia Kicinova and Rosemary Stevens for their inexhaustible work on the complexity of the project finances (Rosemary will be pestering you for your financial reports now).
Callum Piper, for whom this was his first full-time employment and who has taken on any task we have thrown at him. Note that Callum will continue to work with us and will be your main contact point in the new future of Europlanet.
Finally, to the whole Europlanet 2024 RI team, a personal thank you for making the last years ones in which I felt I was amongst a remarkable group of people who have made a significant impact in both science and the community. It has truly been a pleasure and privilege to be the coordinator of Europlanet 2024 RI which I will always look back upon as a highlight not only of my career but my life.
And now we move on into those ‘sunlight uplands’ not only on the Earth but all those other planets and moons out there…
Call for Nominations for Vice President of Europlanet Board
Europlanet invites nominations for one Vice-President position on the Executive Board of the Europlanet Society and Europlanet Association. Deadline for nominations: 09 August 2024.
The election results will be announced during the General Assembly at the hybrid Europlanet Science Congress (EPSC) 2024 in Berlin/online on Tuesday, 10 September 2024. An electronic ballot will be launched 20 days before the meeting, with all members of the Society encouraged to vote.
The Executive Board is the governing body of the Europlanet Society and the Executive Board members are responsible for directing and controlling the affairs and property of the Europlanet Society, including EPSC. The Executive Board consists of the five officers of the Society (the President, two Vice-Presidents, the Secretary and the Treasurer) and six other members, who are elected for a period of four years.
The President, Vice-Presidents, Secretary and Treasurer also sit on the administrative body of the Europlanet Association (AISBL), the Europlanet legal entity established in 2023 in Belgium and, as such, are legal representatives of the Europlanet Association and responsible for taking decisions on its behalf.
The President, Treasurer, Secretary, one Vice President and six Board Members were elected less than four years ago. As such, the elections in 2024 will only concern one open Vice-President officer position, which is vacant as Angelo Pio Rossi is stepping down after the completion of his term.
The call for nominations is now open for potential candidates for the Europlanet Society Executive Board Vice President position. The call will close on 09 August 2024.
Any two or more members of the Europlanet Society may nominate candidates for the election to the Executive Board. Self-nomination is possible and encouraged. Standing as a candidate for Vice-President is an important opportunity to help shape Europlanet at an exciting time, so please consider taking on this role!
The Europlanet Early Careers (EPEC) network’s annual training school, EPEC Annual Week, is taking place in Padova, Italy, from 24-28 June 2024.
The meeting is fully hybrid, with in-person and online participants.
The programme started after lunch on Tuesday, with introductions to Europlanet by the Society Vice President, Stavro Ivanovski, and EPEC by Co-Chair, Melissa Mirino, and the EPEC@EPSC Co-Chair, Johanna Bürger.
In the afternoon, participants were challenged to present short pitch introductions to themselves. Timothej Patocka gave the winning pitch and was awarded a prize. The day finished with the first social event: a guided walking tour of the city of Padova .
By Peter McArdle, Hans Huybrighs, Prasanna Deshapriya, Ottaviano Ruesch, and the EPEC future research working group.
The field of sample return is developing rapidly around an increasing number of missions. What facilities and techniques are needed to handle such samples? Will sample return dominate other fields of planetary science? We discussed these questions and more with Dr. Enrica Bonato, who developed the Sample Return Lab at DLR and worked with samples from Hayabusa2 and legacy samples from Luna 24.
Sample of lunar regolith retrieved by the Soviet mission Luna24 in 1976 and donated to the Institute for Cosmos Research, which was part of the Academy of Sciences of the German Democratic Republic (GDR) during the GDR which after 1990 it became the DLR Institute for Planetary Research in Berlin-Adlershof. Credit: DLR.
Can you tell us about your academic background?
I earned my PhD in planetary science, undertaking my research jointly at the Natural History Museum (NHM) in London and the University of Glasgow. My project focused on the thermal metamorphism of carbonaceous chondrites. Following this, I took on a short postdoctoral position at the NHM, where I worked on lithium mining. I am passionate about public engagement, and I explored various outlets for this during my time at the NHM.
After completing my postdoc, I transitioned into the role of lab developer and manager for the newly established DLR sample return lab. When I started this role, there was no lab to speak of! I played a crucial role in planning and outfitting the lab in addition to getting it ready for its intended use as a sample return facility and curation center. As part of my responsibilities at DLR, I am proud to be a member of the Hayabusa 2 and MMX analysis teams.
What advice would you give to early career researchers who would be interested in a similar role to yours?
The key to securing my role as a lab developer manager was ‘delving behind the scenes’ of various instruments during my postdoc. This allowed me to become an independent user of these instruments, by becoming involved in everything from sample preparation, instrument set up and operation to data analysis. Attending numerous training events organised by instrument and software suppliers also proved invaluable experience.
For those intrigued by the prospect of joining sample return missions, I believe being in the right place at the right time is crucial. However, I suggest that early-career researchers (ECRs) with an interest in these missions reach out to existing team members. By doing so, they can explore opportunities to support the mission in various ways.
“I suggest that early-career researchers with an interest in these missions reach out to existing team members.”
Enrica Bonato
How do you see the future of sample return?
We are currently in a golden age for sample return. Multiple missions have successfully returned samples from asteroids (Hayabusa, Hayabusa2, OSIRIS-REx) and the moon (Chang’e 5) in recent years. At the same time new missions are in preparation to return samples from Mars and its moon Phobos (MMX, Mars Sample Return).
I believe that it won’t stop here. In the coming decades, we will witness sample return missions expanding to an increasing number of objects. I am particularly excited about the prospect of sample return missions from Ceres and comets. As part of the sample return mission process, we are also dedicated to enhancing the handling and analysis of samples already on Earth. The collection, transportation, and storage of samples from other planets demand a detailed understanding of material properties, necessitating a new specialisation within the field of planetary science.
“We are currently in a golden age for sample return.”
Enrica Bonato
We can analyse samples much better in a lab on Earth than by using limited instruments on space missions. Will there be a shift towards sample return missions at the cost of traditional space missions?
Enrica Bonato carrying out acceptance tests of the Electron Microprope Analyser (EPMA) at JEOL GmbH in Freising (Germany). Credit: DLR..
“Sample return missions will complement other planetary science missions.”
Enrica Bonato
I believe that sample return missions will complement other planetary science missions. It’s crucial to bring a diverse array of instruments to the objects we’re interested in. On one hand, we need to assess and identify sites that are intriguing and suitable for sample return. On the other hand, we also need to conduct broader investigations of the objects to provide context for the analysis of the samples.
What are the main challenges for sample return in the coming decades?
Challenges will come from the new sample environments that we will access and new types of materials that we will sample, for example a potential future sample return mission from Venus’ surface. Building a spacecraft that can land on Venus’ extremely hostile surface and return a sample is extremely challenging. Challenges will also arise from returning a new type of sample: ice. So far the samples returned are rocks. Sampling ices from Ceres, comets or icy moons and keeping them frozen throughout cruise, the landing and later in storage on Earth brings unique challenges. Some of these technologies already exist in other fields, but a lot of new development is needed.
How did you plan the outfitting of the new sample return lab for DLR?
Dr Enrica Bonato and Dr Jörn Helbert (Head of the Planetary Laboratories at the DLR Institute for Planetary Research in Berlin-Adlershof) attending acceptance tests of the Electron Microprope Analyser (EPMA) at JEOL GmbH in Freising (Germany). The instrument will be moved to the SAL laboratory facilities as soon as the setup of the clean room is completed. Credit: DLR
I was the only person working on this project, alongside the grant holder, who also served as my supervisor. Before my involvement, there were already some initial planning and key milestones in place. My goal was to implement and adapt this plan throughout my time at DLR. I focused on specific techniques, aiming to establish a unique and specialised niche for the lab. Considering both the institute’s requirements and the broader scientific community, I selected instruments and managed their procurement. The next step in the project would be to upgrade the lab to a curation facility.
What are the key features of a dedicated sample return lab? And how might these differ from an equivalent Earth science lab?
The features are quite similar to an Earth science lab. Analyses often take place in labs at universities or research institutes, not necessarily tailored for a particular incoming sample. One notable distinction is the need for personnel to wear lab clothing and adhere to specific standards in sample handling so as not to contaminate samples.
Does the sample return lab at DLR possess any distinctive instruments or employ unique techniques for the analysis of samples that are not currently accessible to the broader community elsewhere?
The sample holders for XRD (X-Ray Diffraction) analysis allow for preparation within a glove box and subsequent analysis of the samples without exposure to air. Additionally, another unique feature is a sample transport shuttle that facilitates vacuum conditions between the Electron Microprobe and SEM (Scanning Electron Microscope), ensuring a controlled environment for the sample.
Acceptance tests of the Electron Microprope Analyser (EPMA) at JEOL GmbH in Freising (Germany). The instrument will be moved to the SAL laboratory facilities as soon as the setup of the clean room has been completed. Credit: DLR.
Exciting years ahead for sample return. Thanks Enrica!
Europlanet is delighted welcome Noah Jäggi as the Europlanet Science Congress (EPSC) Incoming Vice Chair.
An introduction from Noah:
I am a space physicist with a background in geochemistry that connects laboratory experiments to numerical simulations. In 2019 I joined the Europlanet Early Career (EPEC) network and have been an active member since, co-organising early career focused events at EPSC and chairing the EPEC@EPSC working group from 2020 to 2022. In mid-2023 I completed my PhD and decided to become the EPEC treasurer to remain in contact with EPEC projects. Since then, I have moved to the USA for a two-year postdoctoral fellowship, continuing my services as a treasurer for EPEC, and I recently returned to EPEC@EPSC to organise another Science Flash at this year’s EPSC in Berlin. I am looking forward to serving as the EPSC vice chair going forward and am immensely grateful for the warm welcome I received from the EPSC committee.
Research Infrastructures (RIs) as key players of strategic autonomy in a changing global context
the socio-economic and environmental impact of RIs
the broad ecosystems of RIs.
In a mix of presentations and panel discussions, representatives of the European Commission, the Belgian Science Policy Office (BELSPO), the European Strategy Forum for Research Infrastructures (ESFRI), national policy makers and participants in a range of research infrastructures, discussed current challenges and future visions for the European RI community.
The conference also provided an opportunity to see and discuss the new ESFRI Landscape Analysis 2024. The Landscape Analysis provides a contextualised overview of the European RI ecosystem, identifying the main RIs operating transnational access in Europe, in all fields of research, and major new or ongoing projects. The Landscape Analysis 2024 will provide the framework for the next ESFRI Roadmap, which will set out strategic guidance for research infrastructures for the next 10-20 years.
Royal Belgian Library. Credit: Creative Commons/EmDeePresentation of the ESFRI Landscape Analysis at the Belgian Presidency Conference on ‘Research Infrastructures in a Changing Global, Environmental and Socio-economical Context.
As planetary science is such an interdisciplinary field, Europlanet works within a collaborative ecosystem of related astronomy and space RIs and networks, which include Opticon, Radionet, JIVE, Lofar, ChETEC-INFRA and the Square Kilometre Array (SKA).
The idea for an Astronomy & Space Network of Networks (NeoNs) was proposed in 2023, during a day of sessions at the Europlanet Research Infrastructure Meeting (ERIM) 2023 in Bratislava. The aim of Astronomy & Space NeoNs is to foster collaboration and provide coordinated feedback on astronomy and space science topics to policy makers. The first action of Astronomy & Space NeoNs was to provide feedback on the draft Physical Sciences and Engineering Domain of the ESFRI Landscape Analysis in 2023.
This input has clearly been noted. Astronomy & Space NeoNs is referenced in the Landscape analysis as “a recent network of RIs dedicated to Astronomy and Space Science, which facilitate transnational access to infrastructures”.
Importantly, due to feedback from Europlanet, coordinated through NeoNs, the title of the subdomain in PSE has been changed from ‘Astronomy and Particle Physics’ to ‘Astronomy, Astroparticle Physics and Space Sciences’. Although planetary science and related topics were previously covered in the description of this subdomain, the broadening of the title removes ambiguity and means that planetary science, astrobiology, astrochemistry are now explicitly included and given prominence under the PSE Domain.
Europlanet is also namechecked in the ESFRI Landscape Analysis document:
“…new facilities under construction are fully aligned and complementary with the major upcoming missions in space (such as the study of dark energy via Euclid, launched in 2023, the study of exoplanets via PLATO and ARIEL, the study of gravitational waves via LISA, space exploration such as the proposed missions to the Moon and Mars). Space-based observatories will require significant investment by European partners to secure leadership in missions led by ESA or in partnership with NASA, JAXA and other international space agencies. Experimental facilities should be complemented by e-infrastructures to cope with the rapidly developing Big Data capabilities of Machine Learning and Artificial Intelligence. Such networks of Research Infrastructures have been established (e.g. Opticon, Radionet, Europlanet) and are an essential part of the European Research Area. There is a long and successful European heritage here, and huge future potential across all areas of Astronomy, to include commercial return, computing and technology, training and outreach.”
These outcomes demonstrate the potential value of collaboration through Astronomy & Space NeoNs for the planetary community. The next steps in developing NeoNs will be discussed at the European Astronomical Society (EAS) Annual Meeting in Padova from 1-5 July.
The need for flexibility in legal structures for RIs was also raised at the conference in Brussels. The organisational structure for RIs favoured by the EC is the European Research Infrastructure Consortium (ERIC), a specific legal form designed to facilitate the establishment and operation of Research Infrastructures of European interest. ERICs are ‘participated by States’ and require approval at the national government level with council representatives usually appointed by government agencies. As of 22 December 2023, there are 28 ERICS, which represent only a fraction of the pan-European RI networks established over the last three decades. For small and medium-sized DRIs, the ERIC model may not be either optimal or practical, for example, when the DRI largely comprises facilities within universities and industry, and/or there is a need for flexibility in the type of infrastructure offered to communities.
Since 2021, Europlanet has been involved in the co-organisation of workshops for small to medium-sized Distributed Research Infrastructures (DRIs). In early 2024, Europlanet coordinated a survey to find out more about the ecosystem of DRIs, including the research areas covered, the DRIs’ funding models, their structures and plans for sustainability. Preliminary analysis of the survey responses show that, as alternatives to the ERIC structure, several DRIs have opted for the Association Internationale Sans But Lucratif (AISBL) model, which was adopted by Europlanet in 2023, or the French Loi 1901.
A fourth, in-person DRI workshop is planned in Budapest on 18 September 2024 as part of the Hungarian Presidency of the European Council, and the establishment of a formal DRI network is also being discussed. Further details about the workshop’s agenda and registration will be published soon.
Watch the recordings of Day 1 and Day 2 of the conference.
In dieser Lektion befassen wir uns mit dem pH-Wert bestimmter Umgebungen auf dem Mars und damit, wie sich dies auf seine potenzielle Bewohnbarkeit auswirken kann.
Zur Erinnerung: Lehrernotizen, Präsentationen und alle Inhalte können zur Anpassung und Verwendung in Ihrem Klassenzimmer heruntergeladen werden. Vergessen Sie nur nicht, uns als Quelle anzugeben (siehe “Nutzung der Ressourcen”).
Übersicht
Altersgruppe:
10-14
Benötigte Ausrüstung:
Computer
Projektor
Zeit der Lektion:
45 Minuten (einschließlich 1 Video)
Behandelte Themen:
Chemie (pH)
Biologie (Leben in Extremen)
Astronomie (Mars-Oberflächenbedingungen).
Lernergebnisse:
Gliederung der Aktivität: Verstehen, wie der pH-Wert des Mars die Bewohnbarkeit des Roten Planeten beeinflussen kann.
Nach Abschluss dieser Aktivität können die SchülerInnen:
Verstehen der pH-Skala.
Beschreiben Sie, wie Faktoren auf dem Mars den pH-Wert beeinflussen können.
Diskutieren Sie, wie der pH-Wert die Bewohnbarkeit beeinflusst.
Hintergrundmaterial:
Was ist der pH-Wert?
Aber bevor wir auf die Auswirkungen des pH-Werts eingehen, kann uns jemand erklären, was mit pH-Wert gemeint ist?
(Antworten nehmen)Mit dem pH-Wert messen wir den Säuregrad und die Alkalität. Basen und Säuren werden als chemische Gegensätze betrachtet, da die Wirkung einer Säure darin besteht, die Hydroniumkonzentration (H O3+ ) im Wasser zu erhöhen, während Basen diese Konzentration verringern. Eine Reaktion zwischen wässrigen Lösungen einer Säure und einer Base wird als Neutralisation bezeichnet, wobei eine Lösung aus Wasser und einem Salz entsteht, in der sich das Salz in seine einzelnen Ionen aufspaltet. Wenn die wässrige Lösung mit einem bestimmten gelösten Salz gesättigt ist, fällt jedes weitere Salz aus der Lösung aus.
pH-Skala
Der pH-Wert wird in der Regel anhand der pH-Skala gemessen. Verbindungen mit niedrigem pH-Wert sind sauer, was von einer starken Säure bei pH 1 bis zu einer schwachen Säure bei pH 6 reicht. pH 7 gilt als neutral und ein pH-Wert darüber ist basisch, von pH 8 bis 14.
Diskutieren Sie, wie Ihrer Meinung nach der pH-Wert auf dem Mars sein könnte?
Jetzt, da Sie einige Hintergrundinformationen haben, was würden Sie erwarten, dass der durchschnittliche pH-Wert auf dem Mars ist?
(Antworten nehmen)
Wie können wir den pH-Wert feststellen?
Um dies zu wissen, müssen wir zunächst in der Lage sein, den pH-Wert zu bestimmen. Wie können wir das tun?
(Antworten nehmen)
pH-Skalen sind oft farbig. Dies ist auf die übliche Verwendung einer Lösung zurückzuführen, die Universalindikator genannt wird und zur Anzeige des pH-Werts ihre Farbe ändert. Bei Anwesenheit einer Säure färbt er sich rot, bei neutralem pH-Wert wird die Lösung grün und bei Anwesenheit einer Base tiefblau/violett. Es gibt jedoch auch andere Indikatoren wie Phenolphthalein, das sich in Gegenwart einer Base rosa färbt und bei einer Säure keine Farbänderung zeigt. pH-Indikatoren finden sich sogar häufig in der Küche – wie der Saft eines Rotkohls, der sich in Gegenwart einer Base blau-grün und bei einer Säure rosa färbt.
Video: Erkennung des pH-Wertes
Hier haben wir ein Video, das den Farbwechsel einer Lösung bei Verwendung eines Universalindikators zeigt:
Hintergrundinformationen zum Video: In diesem Video wird eine Lösung von schwach konzentriertem Natriumhydroxid (NaOH) gezeigt. Universalindikatorlösung wird hinzugefügt, die die Lösung violett färbt. Anschließend wird eine 5%ige Essigsäurelösung in Form von handelsüblichem weißem Kochessig zugegeben. Die Lösung mit dem Universalindikator färbt sich rot.
Was ist passiert? Warum?
Bitte diskutieren Sie in Gruppen, was Sie in diesem Video beobachtet haben. Warum, glaubt ihr, ist das passiert?
(Zeit für Gruppendiskussion einplanen)
(Antworten nehmen)
Rio Tinto Fluss
Es gibt auf der Erde Gebiete mit extremen pH-Werten. Ein solcher Ort ist der Fluss Rio Tinto in Spanien. Der pH-Wert des Rio Tinto erreicht in einigen Bereichen des Flusses einen Wert von bis zu 2,3, was zeigt, dass diese Umgebung sehr sauer ist. Dieser niedrige pH-Wert wird durch Wechselwirkungen zwischen Gestein und Mikroorganismen im Fluss verursacht, die als Gesteins-Wasser-Biologie-Wechselwirkungen bekannt sind. Dies führt dazu, dass große Mengen an Verbindungen wie Schwefelsäure, Sulfate und Eisen(III)-Eisen im Flusswasser vorhanden sind. Letzteres verleiht dem Rio Tinto seine charakteristische rote Färbung.
In dieser extremen Umgebung wurden sowohl eukaryotische als auch prokaryotische Organismen beobachtet, die unter den sauren Bedingungen gedeihen. Daher ist der Rio Tinto ein analoges Planetenfeld, das uns Aufschluss über die Aussichten auf Leben in extremen Umgebungen anderswo im Sonnensystem geben kann.
Wie wirkt sich CO2 auf den pH-Wert aus?
Zurück zum Mars: Die Marsatmosphäre besteht hauptsächlich aus Kohlendioxid, und an den Polen des Mars gibt es große Ablagerungen von festem Kohlendioxid.
Welche Auswirkung hat Kohlendioxid Ihrer Meinung nach auf den pH-Wert? Bitte diskutieren Sie in Gruppen.
(Zeit für Gruppendiskussion einplanen)
(Antworten nehmen)
Wenn Kohlendioxid in Wasser gelöst wird, entsteht Kohlensäure, die den pH-Wert auf dem Mars senkt. Kohlensäure ist etwas, dem viele Menschen täglich in Form von kohlensäurehaltigen Getränken begegnen. Wenn Sie jemals einen merkwürdigen Nachgeschmack in kohlensäurehaltigem Wasser bemerkt haben, ist dies auf das Vorhandensein von Kohlensäure zurückzuführen. Einer der Gründe, warum bei der Entwicklung von kohlensäurehaltigen Getränken so viel Zucker verwendet wird, besteht darin, genau diesen Geschmack zu überdecken.
Wie könnte sich dies auf die Bewohnbarkeit auswirken?
Wie würde sich Ihrer Meinung nach das Vorhandensein von Kohlensäure auf die mögliche Bewohnbarkeit des Mars auswirken? Bitte diskutieren Sie in Gruppen.
(Zeit für Gruppendiskussion einplanen)
(Antworten nehmen)
Rückblick
Nach dieser Lektion sollten die Schüler in der Lage sein, diese Fragen zu beantworten:
Was zeigt eine pH-Skala an?
Welche Faktoren auf dem Mars (früher oder heute) könnten den pH-Wert beeinflussen?
Wie könnte sich der pH-Wert auf die Bewohnbarkeit des Mars auswirken?
In dieser Lektion befassen wir uns mit der Entwicklung von Salzschichten und dem Potenzial für ihre Bewohnbarkeit.
Zur Erinnerung: Lehrernotizen, Präsentationen und alle Inhalte können zur Anpassung und Verwendung in Ihrem Klassenzimmer heruntergeladen werden. Vergessen Sie nur nicht, uns als Quelle anzugeben (siehe “Nutzung der Ressourcen”).
Übersicht
Altersgruppe:
10-14
Benötigte Ausrüstung:
Computer
Projektor
Zeit der Lektion:
45 Minuten (einschließlich 1 Video)
Behandelte Themen:
Chemie (Zustände der Materie)
Biologie (Leben in Extremen)
Astronomie (Mars-Oberflächenbedingungen).
Gliederung der Aktivität:
Verstehen Sie die Entstehung von Salzpfannen durch den Mechanismus der Verdunstung.
Lernergebnisse:
Nach Abschluss dieser Aktivität können die SchülerInnen:
Verdunstung kritisch hinterfragen
Die Zustände der Materie verstehen
Beschreiben, wie sich Salzgehalt und Austrocknung die Bewohnbarkeit einer Umgebung beeinflussen.
Hintergrundmaterial:
Verdunstung
Zunächst einmal müssen wir uns mit der Verdunstung befassen. Kann jemand erklären, was mit Verdunstung gemeint ist?
(Antworten nehmen)
Verunstung ist der Prozess, bei dem eine Flüssigkeit von einem flüssigen in einen gasförmigen Zustand übergeht. Dies kann viele Formen annehmen – das häufigste Beispiel ist ein Prozess, der oft als Lufttrocknung bezeichnet wird. Dies geschieht, indem Flüssigkeitsmoleküle an der Oberfläche in einen Dampf übergehen. Ein weiteres Beispiel ist das Sieden, das auftritt, wenn die Temperatur einer Flüssigkeit ihren Siedepunkt überschreitet (im Falle von Wasser ist dies 100 ⁰C). Wenn Wasser die Temperatur von 100 ⁰C überschreitet, wird es zu Dampf. Entgegen der landläufigen Meinung ist Dampf unsichtbar, und die Wolken, die man überkochendem Wasser sieht, sind in Wirklichkeit Wasserdampf, der wieder zu flüssigen Wassertröpfchenkondensiert.
Aggregatzustände der Materie
Wir haben bereits über die Idee der Materiezustände gesprochen, aber kann jemand erklären, was die Materiezustände sind?
(Antworten nehmen)
Ein fester Zustand behält seine Form bei. Seine Moleküle sind viel stärker strukturiert und haben nicht die verfügbare Energie, um sich frei zu bewegen. Bei den meisten Verbindungen ist der feste Zustanddie dichteste Form. Es gibt jedoch Ausnahmen von dieser Regel, z. B. Eis, das eine geringere Dichte hat als flüssiges Wasser. Dies ist auf seine molekulare Struktur als Festkörper zurückzuführen. Wenn eine Verbindung mehr Energie erhält und schmilzt, haben wir die flüssige Form einer Verbindung. Eine Flüssigkeit ist ein Fluid, das heißt, sie kann fließen und die Form ihres Behälters annehmen. Einige Flüssigkeiten können recht instabil sein, sie verdunsten leicht oder benötigen einen hohen Druck, um sich zu bilden, wie z. B. Kohlendioxid. Wenn ein Feststoff wie Kohlendioxid unter normalem Erddruck von einem Feststoff zu einem Gas wird, spricht man von Sublimation. Der letzte Aggregatzustand, der im Rahmen dieser Lektion behandelt wird, ist, wie bereits erwähnt, Gas. Gase sind wie Flüssigkeiten, fließfähig und füllen, je nach ihrer Dichte, den gesamten verfügbaren Raum aus.
MakgadikgadiSalzpfannen und Formation
Auf diesem Foto sehen wir die Makgadikgadi-Salzpfannen in Botswana. Dies ist eine riesige Salzfläche, die für die Erforschung der Mikrobiologie in salzreichen Gebieten sehr wertvoll geworden ist.
Diskutieren Sie, wie diese Umgebung entstanden ist
Diskutieren Sie in Gruppen, wie diese Umgebung entstanden sein könnte.
(Zeit für Gruppendiskussion einplanen)
(Antworten nehmen)
Video: Wie geschieht das?
Hier haben wir ein Video, das zeigt, wie sich eine Umgebung wie die Makgadikgadi-Salzpfannen gebildet haben könnte:
Hintergrundinformationen zum Video: In diesem Video haben wir eine gesättigte Lösung von Natriumchlorid (NaCl). Wenn das Wasser verdunstet, wird die Lösung übersättigt. Bei weiterer Verdampfung wird sie übersättigt und das Natriumchlorid fällt aus der Lösung aus. Das Natriumchlorid hat eine viel höhere Dichte als der Wasserdampf und liegt deutlich unter seinem Schmelzpunkt, geschweige denn unter seinem Siedepunkt. Wenn also das Wasser verdampft, bleiben die dichteren festen Verbindungen wie das Natriumchlorid zurück.
Glaubst du, dass dort Leben überleben kann?
Bitte diskutieren Sie in Gruppen, ob Sie glauben, dass Leben in einer Umgebung mit so hohem Salzgehalt überleben kann.
(Zeit für Gruppendiskussion einplanen)
(Antworten nehmen)
Salz- und austrocknungstolerante Bakterien
Austrocknung (ein Zustand extremer Trockenheit) ist eine häufige Belastung, der Bakterien in der natürlichen Umgebung ausgesetzt sind. Daher haben sie eine Vielzahl von Schutzmechanismen entwickelt, um die durch den Wasserverlust verursachten Schäden abzumildern. Einige Arten haben Mechanismen entwickelt, die entweder dazu beitragen, anfällige Zellbestandteile vor Schäden zu schützen, oder die Wasser sequestrieren, um eine Dehydrierung zu vermeiden. Zu diesen Mechanismen gehören die Veränderung der Membranzusammensetzung oder die Modifikation von Lipopolysacchariden, um die Membranen während des Austrocknens zu stabilisieren, sowie die Anhäufung von kompatiblen gelösten Stoffen wie Trehalose, die Zytoplasma- und Membranbestandteile schützen können. Dies hat einige zu der Annahme veranlasst, dass Leben in extremen Umgebungen wie dem hohen Salzgehalt auf dem Mars überleben könnte.
Rückblick
Nach dieser Lektion sollten die Schüler in der Lage sein, diese Fragen zu beantworten:
Welche verschiedenen Zustände der Materie gibt es?
Können Sie das Konzept der Verdunstung erklären?
Wie könnten Salz und Austrocknung die Bewohnbarkeit des Mars beeinflussen?
In dieser Lektion werden wir uns damit beschäftigen, wie gesättigte Salzlösungen die Bewohnbarkeit des Mars beeinflussen.
Zur Erinnerung: Lehrernotizen, Präsentationen und alle Inhalte können zur Anpassung und Verwendung in Ihrem Klassenzimmer heruntergeladen werden. Vergessen Sie nur nicht, uns als Quelle anzugeben (siehe “Nutzung der Ressourcen”).
Übersicht
Altersgruppe:
10-14
Benötigte Ausrüstung:
Computer
Projektor
Zeit der Lektion:
45 Minuten (einschließlich 1 Video)
Behandelte Themen:
Geologie
Chemie
Biologie (Leben in Extremen)
Astronomie (Mars-Oberflächenbedingungen)
Gliederung der Aktivität:
Verstehen von übersättigten Salzlösungen und wie sie die Bewohnbarkeit eines anderen Planeten beeinflussen können.
Lernergebnisse:
Nach Abschluss dieser Aktivität können die SchülerInnen:
Verstehen, wie die Kristallisation funktioniert.
Erklären, wie man gesättigte und übersättigte Lösungen erhält.
In der Lage sein, zu erklären, wie gesättigte Salzlösungen die Bewohnbarkeit beeinflussen.
Hintergrundmaterial:
Einführung in die Sättigung
Um dies zu verstehen, müssen wir zunächst einige Begriffe klären. Kann mir jemand kurz erklären, was unter einer gesättigten Lösung zu verstehen ist?
(Antworten nehmen)
Der Sättigungspunkt ist der Punkt, an dem die maximale Menge einer Verbindung in einer Lösung aufgelöst wurde. So können beispielsweise 357 g Natriumchlorid (oder Kochsalz) in 1 Liter Wasser gelöst werden, bevor der Sättigungspunkt bei einer Konzentration von etwa 26,3 % erreicht ist. Der Sättigungspunkt wird natürlich von vielen Faktoren wie Druck und Temperatur beeinflusst.
Super-Sättigung
In dem soeben angeführten Beispiel wird von einer Wassertemperatur von 20 °C ausgegangen, was in etwa der Raumtemperatur entspricht. Durch die Erwärmung des Wassers kann jedoch mehr von einer bestimmten Substanz gelöst werden, wodurch ein Übersättigungsprodukt entsteht.
Bei 100 °C kann Wasser 390 g Salz lösen, das sind 33 g mehr als in unserem Beispiel mit 20 °C.
Puna-Hochebene, Argentinien
Nachdem wir nun ein wenig verstanden haben, wie diese Mechanismen funktionieren, können wir uns dem Mars zuwenden. Man geht davon aus, dass es in der Geschichte des Mars einen Punkt gab, an dem es gesättigte Salzseen gab. Um zu untersuchen, ob diese Seen für frühes Leben auf dem Mars lebensfähig gewesen wären, werden analoge Standorte auf der Erde genutzt.
Ein solcher Vergleichsstandort ist die Laguna Negra, ein flacher See auf der Puna-Hochebene in Nordargentinien. Diese Umgebung ist mit Calziumchloridsalzen gesättigt. Dies stellt eine sehr raue Umgebung für Leben dar.
Wie bewohnbar könnte Laguna Negra Ihrer Meinung nach sein?
Diskutiert in euren Gruppen, ob ihr glaubt, dass es in der Laguna Negra tatsächlich Leben gibt.
(Nehmen Sie sich Zeit für eine Diskussion)
(Antworten nehmen)
In der Laguna Negra wurde tatsächlich mikrobielles Leben nachgewiesen; diese Lebensformen sind halophil und gedeihen in salzreichen Umgebungen.
Kristallisation
Metallsalze wie Calciumchlorid und Natriumchlorid liegen häufig in kristalliner Form vor. Kristallisation ist der (natürliche oder künstliche) Prozess, durch den sich ein Feststoff bildet, dessen Atome oder Moleküle in einer als Kristall bekannten Struktur hochgradig organisiert sind. Kristalle entstehen unter anderem durch Ausfällung aus einer Lösung, durch Gefrieren oder seltener durch direkte Abscheidung aus einem Gas.
Hier sehen Sie ein Diagramm, das die Molekularstruktur eines Salzkristalls zeigt. Ihre hoch organisierte Struktur führt dazu, dass kristalline Verbindungen vergleichsweise stark sind. So bestehen beispielsweise sowohl Graphit in Bleistiften als auch Diamanten aus reinem Kohlenstoff, und dennoch lässt sich Graphit zwischen den Fingerspitzen zerdrücken, während Diamanten zu den härtesten Substanzen in der Natur gehören. Dies ist auf ihre molekulare Anordnung zurückzuführen.
Video: Wie sieht die Kristallisation aus?
Übersättigungen können sehr leicht zur Bildung von Kristallen führen, wenn sie die Lösung verlassen.Hier haben wir ein Video, das das Ausgießen einer übersättigten Natriumacetatlösung zeigt:
Video-Hintergrundinformationen: Natriumacetat ist eine ionische Verbindung, die aus Natriumkationen, Na(+), und Acetat-Ionen, C H O232(-), besteht. Wie die meisten Acetate weist es eine hohe Löslichkeit in Wasser auf: 76 g lösen sich in 100 ml bei 0 °C. Die Löslichkeit nimmt jedoch bei höheren Temperaturen erheblich zu. Die Ausfällung eines Feststoffs aus einer Lösung führt zu einer Abnahme der Unordnung im System. Das heißt, in der Lösung bewegen sich die Ionen frei in zufälligen Richtungen und weisen daher eine hohe Unordnung auf. Wenn sich die Ionen zu festen Kristalliten verbinden, wird ihre Bewegungsfreiheit eingeschränkt. Die Wissenschaftler bezeichnen dies als eine Abnahme der Entropie oder Unordnung des Systems. Die Gesetze der Thermodynamik besagen, dass ein Prozess, bei dem die Entropie spontan abnimmt, wie z. B. die Ausfällung eines Festkörpers aus einer Lösung, auch Wärme freisetzen muss. Folglich erwärmt sich die Einführung eines festen Natriumacetat-Kristallits selbst, wenn das Natriumacetat aus der Lösung ausfällt.
Was ist passiert? Warum?
Diskutiert bitte in euren Gruppen, was ihr in diesem Video beobachtet und warum ihr glaubt, dass dies passiert ist.
(Nehmen Sie sich Zeit für eine Diskussion)
(Antworten nehmen)
Rückblick
Nach dieser Lektion sollten die Schüler in der Lage sein, diese Fragen zu beantworten:
Können Sie den Mechanismus der Kristallisation erklären?
Wie entstehen gesättigte und übersättigte Lösungen?
Wie wirken sich gesättigte Salzlösungen auf die Bewohnbarkeit aus?
In dieser Lektion befassen wir uns mit der Chemie des Mars und damit, wie sich diese auf seine mögliche Bewohnbarkeit auswirken kann.
Zur Erinnerung: Lehrernotizen, Präsentationen und alle Inhalte können zur Anpassung und Verwendung in Ihrem Klassenzimmer heruntergeladen werden. Vergessen Sie nur nicht, uns als Quelle anzugeben (siehe “Nutzung der Ressourcen”).
Verstehen, wie die Chemie des Marsbodens die Bewohnbarkeit des Roten Planeten beeinflussen kann. Dazu wird genauer untersucht, wie Temperatur und Salzgehalt die Chemie des Mars beeinflussen können.
Lernergebnisse:
Nach Abschluss dieser Aktivität können die SchülerInnen:
Verstehen, welche Auswirkungen die Temperatur auf die Chemie des Mars hat.
Erklären, wie der Salzgehalt den Gefrierpunkt beeinflusst.
Überprüfen, wie sich all diese Faktoren auf die Bewohnbarkeit auswirken.
Hintergrundmaterial:
CO2 auf dem Mars – Atmosphäre
Zunächst werden wir uns mit der Marsatmosphäre befassen. Die Luft auf dem Mars ist viel dünner als die Luft, die wir hier auf der Erde atmen. Die Dichte der Erdatmosphäre beträgt etwa 1,2 kg/m3 , während die Atmosphäre auf dem Mars nur 0,02 kg/m3 beträgt – mehr als 50 Mal dünner.
Die Marsatmosphäre unterscheidet sich auch in ihrer chemischen Zusammensetzung erheblich von unserer eigenen. Die Erdatmosphäre besteht aus etwa 78 % Stickstoff, 21 % Sauerstoff, 1 % Argon, 0,04 % Kohlendioxid und geringen Mengen anderer Gase. Die Luft enthält auch eine variable Menge an Wasserdampf, im Durchschnitt etwa 1 % auf Meereshöhe und 0,4 % in der gesamten Atmosphäre. In krassem Gegensatz dazu besteht die Marsatmosphäre zu 96 % aus Kohlendioxid.
Einführung in die CO2
Werfen wir nun einen Blick auf Kohlendioxid. Kohlendioxid ist ein doppelt kovalent gebundenes Molekül, das aus zwei Sauerstoffatomen besteht, die an ein Kohlenstoffatom gebunden sind, so dass wir insgesamt vier gebundene Elektronen haben. Kohlendioxid kommt hier auf der Erde normalerweise als Gas vor, aber bei -80 °C gefriert es zu einer festen Verbindung, die allgemein als Trockeneis bekannt ist. Festes Kohlendioxid ist an den Polen des Mars zu finden, wo es auf Temperaturen von bis zu -120 °C fallen kann. Diese Regionen, die als Permafrostböden bekannt sind, enthalten auch Wassermoleküle (aber darauf kommen wir später noch zu sprechen).Kohlendioxid hat einige interessante Eigenschaften: Ein Beispiel dafür ist, dass es nur unter hohem Druck eine flüssige Phase bildet. Ohne diesen Druck geht es in einem Prozess, der als Sublimation bekannt ist, von einem Feststoff in ein Gas über.
Video: Trockeneis-Sublimation
Hier ist ein Video, das dies in Aktion zeigt:
Video-Hintergrundinformationen: Sublimation ist der Übergang eines Stoffes direkt vom festen in den gasförmigen Zustand, ohne den flüssigen Zustand zu durchlaufen. Die Sublimation ist ein endothermer Prozess, der bei Temperaturen und Drücken unterhalb des Tripelpunkts eines Stoffes in seinem Phasendiagramm stattfindet, was dem niedrigsten Druck entspricht, bei dem der Stoff als Flüssigkeit existieren kann. Der umgekehrte Prozess der Sublimation ist die Deposition oder De-Sublimation, bei der ein Stoff direkt von einer gasförmigen in eine feste Phase übergeht. Sublimation wird auch als Oberbegriff für einen Übergang von der festen in die gasförmige Phase (Sublimation) und einen anschließenden Übergang von der gasförmigen in die feste Phase (Deposition) verwendet. Ein Übergang von Flüssigkeit zu Gas wird als Verdampfung bezeichnet, wenn er unterhalb des Siedepunkts der Flüssigkeit stattfindet, und als Sieden, wenn er am Siedepunkt stattfindet. Beim Übergang von Feststoffen zu Gasen gibt es jedoch keine solche Unterscheidung; er wird immer als Sublimation bezeichnet.
Subglazialer See auf dem Mars
Obwohl die Temperatur an den Polen des Mars niedrig genug für die Ablagerung von Trockeneis ist, gibt es Theorien, dass sich unter dem Eis Seen mit Wasser befinden könnten. Dies wurde in den letzten 30 Jahren als Möglichkeit diskutiert und insbesondere, zwischen dem 29. Mai 2012 und dem 27. Dezember 2015. Eine Mission der Europäischen Weltraumorganisation (ESA) mit dem (MARSIS-Instrument auf Mars Express) untersuchte ein 200 km breites Gebiet des Planum Australe am Südpol des Mars. Dabei wurde eine sonarähnliche Technik eingesetzt, um Informationen über die Zusammensetzung des Permafrosts zu sammeln. Es wurde ein Gebiet untersucht, das anomale Eigenschaften aufwies; hier ist ein Bild der Daten, die bei dieser Untersuchung gesammelt wurden.
Übersichtsdiagramme
Diskutiert in euren Gruppen, ob ihr glaubt, dass dies genug Beweise sind, um die Behauptung eines Flüssigwassersees zu rechtfertigen. Wie könnte ein solcher See in einem so kalten Klima existieren?
(Nehmen Sie sich Zeit für eine Diskussion)
(Antworten nehmen)
Salze und Gefrierpunkte von Wasser
Ob es einen subglazialen See gibt oder nicht, steht noch zur Debatte. Eine vorgeschlagene Erklärung für seine Existenz ist jedoch der hohe Salzgehalt. Natriumchlorid oder Tafelsalz wird oft zum Räumen von Eis verwendet – man denke nur an den Einsatz von Streusalz auf Straßen im Winter.
Video über Salze und Gefrierpunkt
Hier ist ein Video über ein Experiment, bei dem das Gefrieren von Wasser und Salzwasser mit Hilfe von Trockeneis verglichen wird:
Video-Hintergrundinformationen: Salz (NaCl) löst sich in Wasser in seine Ionen auf, Na+ und Cl– auf. Die Ionen diffundieren durch das Wasser und hindern die Wassermoleküle daran, sich eng genug zusammenzufinden und in der richtigen Ausrichtung zu organisieren, um eine feste Form (Eis) zu bilden. Eis absorbiert Energie aus seiner Umgebung, um den Phasenübergang von fest zu flüssig zu vollziehen. Dies könnte dazu führen, dass reines Wasser wieder gefriert, aber das Salz im Wasser verhindert, dass es zu Eis wird. Allerdings wird das Wasser kälter als es war. Die Temperatur kann unter den Gefrierpunkt von reinem Wasser sinken.
Die Zugabe von Verunreinigungen zu einer Flüssigkeit senkt deren Gefrierpunkt. Die Art der Verbindung spielt keine Rolle, aber die Anzahl der Teilchen, in die sie in der Flüssigkeit zerfällt, ist wichtig. Je mehr Teilchen entstehen, desto stärker wird der Gefrierpunkt gesenkt. Wenn man also Zucker in Wasser auflöst, sinkt auch der Gefrierpunkt des Wassers. Zucker löst sich einfach in einzelne Zuckermoleküle auf, so dass seine Auswirkung auf den Gefrierpunkt geringer ist als bei Zugabe einer gleichen Menge Salz, das in zwei Teilchen zerfällt. Salze, die in mehr Teilchen zerfallen, wie Magnesiumchlorid (MgCl2), haben eine noch größere Auswirkung auf den Gefrierpunkt. Magnesiumchlorid löst sich in drei Ionen auf – ein Magnesiumkation und zwei Chloridanionen.
Diskutieren Sie, was passiert ist? Warum?
Was haben Sie in diesem Video beobachtet? Diskutieren Sie in euren Gruppen und Geben die Rückmeldung.
(Zeit für eine Diskussion einplanen)
(Antworten nehmen)
Kangerlussuaq-Feld
Die Forscher hoffen, mehr Informationen über diese Möglichkeit zu erhalten, indem sie Analogien auf der Erde untersuchen. Eines der besten Analoga für die Pole des Mars sind Gebiete wie Kangerlussuaq in Grönland. Grönland ist die größte Insel der Welt und mehr als drei Viertel seiner Oberfläche sind von der einzigen permanenten Eisschicht außerhalb der Antarktis bedeckt. Es ist daher eine der wenigen extremen kryogenen Umgebungen auf der Erde, die dennoch relativ leicht zugänglich ist.
Kangerlussuaq liegt an der Westküste Grönlands und ist eine der am besten zugänglichen Regionen der Insel mit einem internationalen Flughafen. Von dort aus kann man das Gletschereis und weite Permafrost gebiete erreichen.
Könnte Leben in Kangerlussuaq oder einem unterirdischen See auf dem Mars existieren?
Glauben Sie, dass Leben entweder in Kangerlussuaq oder in den möglichen unterirdischen Seen auf dem Mars existieren könnte? Bitte diskutiert in euren Gruppen.
(Zeit für eine Diskussion einplanen)
(Antworten nehmen).
Rückblick
Nach dieser Lektion sollten die Schüler in der Lage sein, diese Fragen zu beantworten:
Welchen Einfluss hat Salz auf den Gefrierpunkt von Wasser?
Was ist Trockeneis? Was ist Permafrost?
Wie wirkt sich die Chemie auf dem Mars auf die Bewohnbarkeit aus?
Europlanet 2024 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871149.
Europlanet AISBL (Association Internationale Sans But Lucratif - 0800.634.634) is hosted by the Department of Planetary Atmospheres of the Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Avenue Circulaire 3, B-1180 Brussels, Belgium.