The Europlanet 2024 Research Infrastructure (RI) project looks at the many ways Machine Learning (ML) is revolutionising planetary science. The advent of Machine Learning (ML) has enabled a new approach, known as data-driven science. Using the wealth of datasets and streams available, ML can explore the data to find a pattern or commonality. Out of these initial steps comes a hypothesis that can be tested through data analysis, which, again, hopefully leads to a new understanding. Clustering or fusing datasets, moreover, can reveal connections that are not recognisable in the individual datasets.
The Europlanet 2024 Research Infrastructure is a €10m project, funded by the European Commission’s Horizon 2020 programme, that supports the planetary science community. The project’s core activities are to provide access to facilities, field sites, and data services.
However, Europlanet also provides investment through ‘Joint Research Activities’ that combine the expertise of multiple partners to create the new infrastructure and services needed to carry out world-leading planetary research. Since 2020, the project has developed ML tools to handle complex planetary science data more efficiently and provide opportunities to combine and visualise multiple diverse datasets. This programme has been further enhanced through a collaboration with a second Horizon 2020 project, EXPLORE, which is developing applications for the exploitation of galactic, stellar and lunar data, and provides a platform for deploying and testing ML tools and services.
Further, Europlanet’s ML-powered tools are based on scientific cases proposed by the community that address key challenges in planetary research. From these proposals, seven cases were chosen to follow up initially during the project, and further cases have been added over time. All the tools are open-source, ready-to-use, and highly customisable, enabling other researchers to freely deploy and adapt them for their own research scenarios.
Lastly, it should be noted that, by developing ML tools tailored to data-driven planetary science, Europlanet has cemented collaborations, started to build new user communities and developed services that are already resulting in publications. While the planetary science community could be seen as late to the party in adopting ML, interest is now high. This couldn’t be more timely – with flagship missions to Mercury and Jupiter soon adding to the deluge of data streams, the era of data-driven science is only just beginning.
Europlanet 2024 RI and EXPLORE have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No. 871149 and No. 101004214, respectively.
Please follow the link here to read to entire article.
Περιγραφή Δραστηριότητας: Κατανόηση του πώς η χημεία του αρειανού εδάφους μπορεί να επηρεάσει την κατοικησιμότητα του Κόκκινου Πλανήτη. Εμπεριέχει μία πιο στενή ματιά στον τρόπο με τον οποίο η θερμοκρασία και η αλατότητα μπορούν να επηρεάσουν τη χημεία του Άρη.
Για ηλικίες:
10-14
Απαραίτητος εξοπλισμός:
Υπολογιστής
Προβολέας
Χρόνος μαθήματος:
45 Λεπτά (περιλαμβάνει 2 βίντεο)
Θέματα που καλύπτονται:
Χημεία (διαλυτότητα, κορεσμός, σύνθετες δομές)
Βιολογία (ζωή σε ακραίες συνθήκες)
Αστρονομία (συνθήκες στην επιφάνεια του Άρη)
Μαθησιακά αποτελέσματα
Μετά την ολοκλήρωση της δραστηριότητας, οι μαθητές:
Θα καταλάβουν τι επίπτωση έχει η θερμοκρασία στη χημεία του Άρη.
Θα μπορούν να εξηγήσουν πώς η αλατότητα επηρεάζει τα σημεία τήξης.
Θα κατανοήσουν πώς τα παραπάνω επηρεάζουν την κατοικησιμότητα.
Описание: Изучить, как химический состав марсианской почвы может повлиять на обитаемость Красной планеты. Это предполагает более пристальное рассмотрение того, как температура и соленость могут повлиять на химию Марса.
Возраст:
10-14
Необходимое оборудование:
Компьютер
Проектор
Время урока:
45 минут (включая 2 видео)
Темы урока:
Химия (растворимость, насыщение, составные структуры)
Биология (жизнь в крайностях)
Астрономия (состояние поверхности Марса)
Образовательные цели
По итогам изучения материала ученики смогут:
Понимать, какое влияние температура оказывает на химический состав Марса.
Уметь объяснить, как соленость влияет на температуру замерзания.
Знать, как все вышеперечисленное влияет на обитаемость.
Σε αυτό το μάθημα θα δούμε τα ηφαίστεια στον Άρη και πώς αυτά μπορεί να έχουν συνεισφέρει στην κατοικησιμότητα του Κόκκινου Πλανήτη στη διάρκεια της ιστορίας του.
Περιγραφή Δραστηριότητας: Κατανόηση του σχηματισμού των ηφαιστείων, στη Γη και στον Άρη, και πώς αυτά μπορεί να έχουν επηρεάσει την κατοικησιμότητα του Άρη στο παρελθόν.
Για ηλικίες:
10-14
Απαραίτητος εξοπλισμός:
Υπολογιστής
Προβολέας
Χρόνος μαθήματος:
45 Λεπτά (περιλαμβάνει 2 βίντεο)
Θέματα που καλύπτονται:
Γεωλογία
Βιολογία (Ζωή σε ακραίες συνθήκες)
Αστρονομία (Συνθήκες στην επιφάνεια του Άρη)
Μαθησιακά αποτελέσματα
Μετά την ολοκλήρωση της δραστηριότητας, οι μαθητές:
Θα κατανοήσουν πώς σχηματίζονται τα ηφαίστεια.
Θα μπορούν να εξηγήσουν τι είναι η μεταφορά θερμότητας και γιατί συμβαίνει μέσα σε ένα ηφαίστειο.
Να προσδιορίσουν, με βάση τη λογική, την πιθανότητα να είναι κατοικήσιμες οι περιοχές ηφαιστείων.
Σε αυτό το μάθημα, θα εξετάσουμε την ιστορία του Άρη ώστε να εντοπίσουμε αν ήταν ποτέ ένα κατάλληλο περιβάλλον για τη ζωή, όπως την ξέρουμε εδώ στη Γη.
Περιγραφή Δραστηριότητας: Ερευνήστε πώς έχει αλλάξει ο Άρης στη διάρκεια της ιστορίας του και πώς αυτό μπορεί να επηρεάσει την κατοικησιμότητα του Κόκκινου Πλανήτη.
Για ηλικίες:
10-14
Απαραίτητος εξοπλισμός:
Υπολογιστής
Προβολέας
Χρόνος μαθήματος:
45 Λεπτά (περιλαμβάνει 1 βίντεο)
Θέματα που καλύπτονται:
Χημεία
Γεωλογικός χρόνος
Βιολογία (Ζωή σε ακραίες συνθήκες)
Αστρονομία (Οι συνθήκες στην επιφάνεια του Άρη)
Μαθησιακά Αποτελέσματα:
Μετά την ολοκλήρωση της δραστηριότητας, οι μαθητές:
Θα καταλάβουν πώς ο Άρης έχει αλλάξει με το χρόνο.
Θα υποθέσουν πώς αυτό έχει επηρεάσει την κατοικησιμότητά του.
Θα συμπεράνουν ποια περίοδος της ιστορίας του Άρη ήταν πιθανότερο να μπορεί να συντηρήσει ζωή
На этом уроке мы посмотрим на историю Марса, чтобы понять, возможно ли, чтобы эта планета сталаподходящей средой обитания, такой, какая нам известна на Земле.
Μια εισαγωγή στη ζωή σε ακραία περιβάλλοντα, εξερευνώντας τα είδη παραγόντων καταπόνησης (stress) που μπορεί να βρούμε στον Άρη και πώς οι οργανισμοί μπορούν να προσαρμοστούν για να επιβιώσουν.
Una introducción a la vida que se encuentra en ambientes extremos, explorando los tipos de estrés que podemos encontrar en Marte y cómo la vida puede adaptarse para sobrevivir a ellos.
EPSC Goes Live for Schools 2021 – Video Presentations and Plain Language Summaries
Out of more than 800 scientific presentations submitted for EPSC2021, we have selected four video talks on topics that may be of interest to schools. On-demand videos and plain language summaries are below.
‘Abundance of water oceans on high-density exoplanets from coupled interior-atmosphere modeling’ by Philipp Baumeister
Liquid water is a very important ingredient when searching for life, but we don’t currently have the technology to directly detect oceans on planets orbiting other stars, called ‘exoplanets’. In this talk Philipp Baumeister of the German Aerospace Centre (DLR) explains the results of an interesting study of 30 000 simulated rocky exoplanets with up to five times the mass of Earth and different internal structures, ranging from ones like the Moon- to ones like Mercury.
The purpose of the study was to investigate which kinds of planets are most likely to collect and hold on to surface water. The main finding is that planets with higher density than the Earth could be the most promising candidates for hosting liquid water.
The analysis takes into account the numerous mechanisms that influence the long-term evolution of rocky planets, as well as atmospheric cycles and all the feedback processes of the between a planet’s atmosphere and interior. High-density planets seem to be more capable of transferring, through outgassing from volcanic eruptions, the water stored in the mantle into the atmosphere. They are also better at preserving water on their surface, and avoiding a situation where the oceans evaporate and enter an inhospitable greenhouse regime with a thick, hot steam atmosphere.
In the near future, these high-density planets could become the perfect targets for further studies and large exploratory missions.
‘Rover testing for lunar science and innovation’ by Chirayu Mohan
In this talk Chirayu Mohan, from the Technological University of Dublin, talks to us about testing a rover called REMMI (Rover for EuroMoonMars Investigations). REMMI was built as part of the EuroMoonMars Investigations, a series of experiments pthat take place at locations on Earth that resemble the Moon or Mars, known as analogue environments.
During the indoor and outdoor testing procedures, carried out at the Analog Astronaut Training Center in Poland and in Mount Etna in Italy, the rover was made to move on different surfaces (from plastic to carpets and rocks) and on steep slopes to find out how well it worked. The team also tested REMMI’s rover camera system for remote operation, and the quality of its pictures and recognition of different features of the environment. The experiments show that REMMI could become a sort of ‘assistant’ in the field, able to provide support during manoeuvers and to help astronauts in collecting samples. The team will use lessons learned to improve REMMI’s design.
‘The Europa Lander Mission Concept: In Situ Exploration of an Ocean World’ by Melissa Cameron
In this talk Melissa Cameron shows us the main features and status of the Europa Lander, a concept for a mission dedicated to the study of Europa, one of Jupiter’s most famous moons. Europa is thought to contain a global ocean of salty liquid water under its frozen crust, so the moon is a scientifically strategic target for both planetary science and astrobiology, potentially providing a stable environment for life.
If selected by NASA, the Europa Lander mission would be launched in about ten years time. The concept for the mission aims at going in search of biological traces on Europa, estimating its habitability and, last but not least, measuring the properties of the moon’s surface and subsurface to facilitate future explorations. The lander will scrape the surface and collect the samples from ~10 cm beneath the surface, then transferring them to a miniature laboratory within the robotic lander for analysis.
This mission would be the first mission to the surface of Europa. With the right balance of technical risk, science return and cost, it could enable us to achieve a new understanding of this fascinating icy worlds.
‘ESA Scientific Exploration of the Moon’ by Francesca McDonald
In this talk Francesca McDonald, Moon Exploration Scientist at the European Space Agency (ESA), explains how ESA is working with international partners from the USA, Russia, Japan, India and China to prepare for scientific exploration of the Moon between now and the early 2030s.
ESA’s strategy for science on the Moon is structured around seven ‘campaigns’ that tackle the main unanswered scientific questions about Earth’s natural satellite, and the technological challenges that need to be overcome for humans to live and work on the Moon.
The campaigns include: a detailed investigation of the lunar poles, where water ice is trapped and protected from the Sun in deeply shadowed craters; plans to monitor dust and charged particles that surround the Moon; geological measurements to study the surface and to try to understand what’s happening deep inside the Moon; biological and technological studies to pave the way for life support; and using the unique environment of the Moon for physics experiments to study the early universe and test the theory of relativity.
Technology demonstrator projects currently being built and tested include a ‘can-opener’ for carefully extracting and preserving samples of lunar rock that have remained sealed since they were collected by the Apollo astronauts 50 years ago, and an experimental set-up for extracting oxygen and water from lunar soil.
Europlanet 2024 RI has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 871149.
Europlanet AISBL (Association Internationale Sans But Lucratif - 0800.634.634) is hosted by the Department of Planetary Atmospheres of the Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Avenue Circulaire 3, B-1180 Brussels, Belgium.